上海交通厌:《通信网络》课程教学资源(PPT讲稿)DELAY MODELS IN DATA NETWORKS、LITTLE’S LAW、ARRIVAL MODEL、M/M/X QUEUING MODELS

复法 票 hanghai Jiao Tong University DELAY MODELS IN DATA NETWORKS
Communication Networks DELAY MODELS IN DATA NETWORKS Shanghai Jiao Tong University 1

Data Networks and Queueing IIIIIO
Communication Networks Data Networks and Queueing R R R R R R R S 2

Queueing Analysis We are given Packet arrival behavior Packet length distribution Packet routing/ handlingpolicies We want to deduce Packet delay Queue length Packet loss Queueing theory can also be applied in other areas, such as in analyzing Circuit Switched Network
Communication Networks Queueing Analysis • We are given: – Packet arrival behavior – Packet length distribution – Packet routing / handling policies • We want to deduce: – Packet delay – Queue length – Packet loss • Queueing theory can also be applied in other areas, such as in analyzing Circuit Switched Network 3

In this chapter · Little's law Poisson process MMX Queueing systems Burke's Theorem and Jackson's Theorem ·MG/1 Reservation systems and priority queue
Communication Networks In this Chapter • Little’s Law • Poisson process • M/M/x Queueing systems • Burke’s Theorem and Jackson’s Theorem • M/G/1 • Reservation systems and priority queue 4

票 hanghai Jiao Tong University LITTLES LAW
Communication Networks LITTLE’S LAW Shanghai Jiao Tong University 5

Little’sLaw Named after John Little, an MiT sloan professor Little.D. C "A proof of the Queueing Formula l- nw, " Operation Research, 9, 383-387(961) A queueing system (N,T) ·N=AT 1: arrival rate of customers into the system N: number of customers in the system T: average amount of time a customer spends in the system
Communication Networks Little’s Law • Named after John Little, an MIT Sloan professor Little J. D. C. “A proof of the Queueing Formula L= λw,” Operation Research, 9, 383-387 (1961) A queueing system 𝑁, 𝑇 𝜆 • 𝑁 = 𝜆𝑇 – 𝝀: arrival rate of customers into the system – 𝑵: number of customers in the system – 𝑻: average amount of time a customer spends in the system 6

About little's law The result is very useful because of its generality System should be stationary without any other assumptions 150 Arrival process can be anything Treat system as a black box 之100 Can be applied to whole system or Any part of the system It can naturally explain why stationary On rainy days. traffic moves slower 10.0 and the streets are more crowded t(×103s) a fast-food restaurant needs a smaller waiting room
Communication Networks About Little’s Law • The result is very useful because of its generality – System should be stationary – Without any other assumptions • Arrival process can be anything • Treat system as a black box • Can be applied to whole system • or Any part of the system • It can naturally explain why – On rainy days, traffic moves slower and the streets are more crowded – A fast-food restaurant needs a smaller waiting room 7 0.0 2.0 4.0 6.0 8.0 10.0 0 50 100 150 200 N t (103 s) =1.1 =0.9 stationary

Observation 1 3 a() z 5月z N() Delay t custom B() custom I Shaded Area N(Tdt= [a(t)-Bcoldt 0
Communication Networks Number of Arrivals a(t) Number of Departures b(t) custom 1 Delay T1 custom 2 Delay T2 a(t) b(t) N(t) t t Observation 1 8 Shaded Area = න 0 𝑡 𝑁 𝜏 𝑑𝜏 = න 0 𝑡 𝛼 𝜏 − 𝛽 𝜏 𝑑𝜏

Observation 2 下四 dI) z Delay t custom 2 B() custom I t2 13 t67 Shaded Area= total time that all the customs spend in the system B(t) T;+ B(t)+1
Communication Networks Observation 2 9 Shaded Area = total time that all the customs spend in the system 𝑖=1 𝛽 𝑡 𝑇𝑖 +𝛽 𝑡 +1 𝛼 𝑡 𝑡 − 𝑡𝑖 Number of Arrivals a(t) Number of Departures b(t) custom 1 Delay T1 custom 2 Delay T2 a(t) b(t) t1 t2 t3 t4 t5 t6 t7 t t

Proof We thus have β(t 「Mor=∑ n+∑ 1 β(t)+1 Dividing by t on both sides, we obtain N(r)dr∑e (0T;+∑(,(t N β(t)+1 λ×T a(t)t re Nt, nt and lt are the average number of customs in the system, the average arrival rate and the average sojourn time during[0,t」. Suppose there is a steady state,ie,Nt→N,λt→λ, and Tt>T when t>o. The above equation immediately yields N=nT
Communication Networks Proof 10 We thus have න 0 𝑡 𝑁 𝜏 𝑑𝜏 = 𝑖=1 𝛽 𝑡 𝑇𝑖 +𝛽 𝑡 +1 𝛼 𝑡 𝑡 − 𝑡𝑖 Dividing by 𝑡 on both sides, we obtain 𝑁𝑡 = 0 𝑡 𝑁 𝜏 𝑑𝜏 𝑡 = σ𝑖=1 𝛽 𝑡 𝑇𝑖 + σ𝛽 𝑡 +1 𝛼 𝑡 𝑡 − 𝑡𝑖 𝑡 𝛼 𝑡 𝛼 𝑡 = 𝜆𝑡 × 𝑇𝑡 where 𝑁𝑡 , 𝜆𝑡 and 𝑇𝑡 are the average number of customs in the system, the average arrival rate and the average sojourn time during 0,𝑡 . Suppose there is a steady state, i.e., 𝑁𝑡 → 𝑁, 𝜆𝑡 → 𝜆, and 𝑇𝑡 → 𝑇 when 𝑡 → ∞. The above equation immediately yields 𝑁 = 𝜆𝑇
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《高级语言程序设计》课程教学资源(试卷习题)试题四(无答案).doc
- 《计算机网络和因特网》教学资源(PPT讲稿)网络互连(概念, IP 地址, IP 路由, IP 数据报, 地址解析).ppt
- 西安交通大学:《网络与信息安全》课程PPT教学课件(网络入侵与防范)身份认证.ppt
- 《计算机基础及C语言程序设计》课程PPT教学课件(讲稿)第1章 概论.ppt
- 《SQL基础教程》课程教学资源(PPT课件讲稿)第6章 数据操作与SQL语句.ppt
- 河南中医药大学:《网络技术实训》课程教学资源(PPT课件讲稿)第一阶段 组网(主讲:路景鑫).pptx
- 南京大学:《编译原理》课程教学资源(PPT课件讲稿)第五章 语法制导的翻译.ppt
- 中国科学技术大学:《计算机体系结构》课程教学资源(PPT课件讲稿)第7章 多处理器及线程级并行.ppt
- 上海交通大学:《程序设计》课程教学资源(PPT课件讲稿)第14章 输入输出与文件.ppt
- 中国科学技术大学:《计算机体系结构》课程教学资源(PPT课件讲稿)第5章 指令级并行.pptx
- 档案数字化基本程序与要求(PPT讲稿).ppt
- Computer Graphics(PPT讲稿)INFORMATION VISUALIZATION.pptx
- 北京大学:C++模板与STL库介绍(PPT讲稿).ppt
- 《数据库基础》课程教学资源(PPT课件讲稿)第四章 数据查询.ppt
- 《网络搜索和挖掘关键技术 Web Search and Mining》课程教学资源(PPT讲稿)Lecture 08 Scoring and results assembly.ppt
- 上海海事大学:《数字图像处理》课程教学资源(PPT课件讲稿)Unit 7 Introduction to Digital Image Processing.ppt
- Performance Evaluation of Long Range Dependent Queues(PPT讲稿).pptx
- 《C语言程序设计》课程电子教案(PPT课件讲稿)第二章 基本数据类型及运算.ppt
- 南京大学:《面向对象技术 OOT》课程教学资源(PPT课件讲稿)模式&框架 Pattern & Framework.ppt
- 《数据库系统概论 An Introduction to Database System》课程教学资源(PPT课件讲稿)第二讲 关系数据库.ppt
- 《软件工程》课程教学资源(PPT课件讲稿)第7章 软件测试.ppt
- 《计算机网络安全》课程教学资源(PPT课件讲稿)第二章 密码学技术.ppt
- 《编译原理》课程教学资源(PPT课件讲稿)语法分析 Syntax analysis(自底向上分析 Bottom-Up Parsing).ppt
- 中国人民大学:《数据库系统概论 An Introduction to Database System》课程教学资源(PPT课件讲稿)第一章 绪论.ppt
- 《计算机组成原理》课程教学资源(PPT课件讲稿)第四章 存储器.ppt
- 随机图与复杂网络(PPT讲稿)随机演化博弈的算法研究及其在复杂网络中的应用.ppt
- 四川大学:《操作系统 Operating System》课程教学资源(PPT课件讲稿)Chapter 3 Process Description and Control.ppt
- 《软件工程》课程教学资源(PPT课件讲稿)第3章 软件需求分析.ppt
- 《PHP程序设计》教学资源(PPT课件讲稿)项目四 面向对象网站开发.ppt
- 数据挖掘实现的住院病人的实时预警(PPT讲稿)Real-Time Clinical Warning for Hospitalized Patients via Data Mining.pptx
- 《机器学习》课程教学资源(PPT课件讲稿)第六章 特征降维和选择.ppt
- 《C语言程序设计》课程教学资源(PPT课件讲稿)第4章 选择结构程序设计.ppt
- 苏州大学:《中文信息处理》课程教学资源(PPT课件讲稿)第二章 汉字代码体系.ppt
- 南京大学:模型检验(PPT课件讲稿)model checking.pptx
- 《单片机原理与其应用》课程教学资源(PPT课件讲稿)第8章 单片机的存储器的扩展.pptx
- 并发程序精化验证及其应用(PPT讲稿)Refinement Verification of Concurrent Programs and Its Applications.pptx
- 《计算机网络安全》课程电子教案(PPT教学课件)第一章 计算机网络安全概述.ppt
- 《Computer Networking:A Top Down Approach》英文教材教学资源(PPT课件讲稿,3rd edition)Chapter 5 Link Layer and LANs.pps
- 上海交通大学:操作系统安全(PPT课件讲稿)操作系统安全 OS Security(邹恒明).pps
- 某高校计算机专业课程教学大纲合集(汇编).pdf