北京大学:《大规模数据处理——云计算 Mass Data Processing Cloud Computing》课程教学资源(PPT课件)Clustering问题 Clustering

Google News IPhone activation headaches still trouble users ·They didn't pick Computerworld-1 hour ago July 02,2007(Computerworld)--It took lain Gillott 47 hours to activate his iPhone after waiting in the Texas heat Friday afternoon to buy one. all3,400,217 Most iPhone users thrilled but a few are iRate Reuters Local6.com Apple iPhone Arrives in the US Techtree.com Forbes-ZDNet-Ars Technica-Wired News related articles all 562 news articles by hand... McCain Considers Ways to Reshape Campaign Washington Post-35 minutes ago By Alec MacGillis Sen.John McCain's presidential campaign today Or Amazon.com announced widespread cutbacks and said it was considering whether Seattle Po过 to accept public campaign funds after another disappointing Intelligencer fundraising effort that has left the Arizona Republican with... McCain's Troubles Mount New York Times 。Or Netflix.. McCain Campaign Struggling,Reduces Staff ABC News CBS News-Reuters-Angus Reid Global Monitor-Sarasota Herald-Tribune all 291 news articles
Google News • They didn’t pick all 3,400,217 related articles by hand… • Or Amazon.com • Or Netflix…

Other less glamorous things... ·Hospital Records 。Scientific Imaging -Related genes,related stars,related sequences ·Market Research -Segmenting markets,product positioning Social Network Analysis ·Data mining Image segmentation
Other less glamorous things... • Hospital Records • Scientific Imaging – Related genes, related stars, related sequences • Market Research – Segmenting markets, product positioning • Social Network Analysis • Data mining • Image segmentation…

The Distance Measure o How the similarity of two elements in a set is determined,e.g. -Euclidean Distance The Euclidean distance between points P-(p1,p2,...Pn)and -(1,2,...,n).in Euclidean n-space.is defined as: V(p-g+()++(P-)=(p-9)2. A common notation for distance isp]-[where [p]=[p1,p2,...,Pn]and [q=g1,92,...,gn]are vectors. -Manhattan Distance -Inner Product Space Maximum Norm -Or any metric you define over the space
The Distance Measure • How the similarity of two elements in a set is determined, e.g. – Euclidean Distance – Manhattan Distance – Inner Product Space – Maximum Norm – Or any metric you define over the space…

Types of Algorithms Hierarchical Clustering vs. Partitional Clustering
• Hierarchical Clustering vs. • Partitional Clustering Types of Algorithms

Hierarchical Clustering ●● Builds or breaks up a hierarchy of clusters
Hierarchical Clustering • Builds or breaks up a hierarchy of clusters

Partitional Clustering 00 O 0 o O O O O 00 o 0 Partitions set into all clusters simultaneously
Partitional Clustering • Partitions set into all clusters simultaneously

Partitional Clustering 0 0 0 Partitions set into all clusters simultaneously
Partitional Clustering • Partitions set into all clusters simultaneously

K-Means Clustering Simple Partitional Clustering Choose the number of clusters.k Choose k points to be cluster centers 。Then
K-Means Clustering • Simple Partitional Clustering • Choose the number of clusters, k • Choose k points to be cluster centers • Then…

K-Means Clustering iterate Compute distance from all points to all k- centers Assign each point to the nearest k-center Compute the average of all points assigned to all specific k-centers Replace the k-centers with the new averages ]
K-Means Clustering iterate { Compute distance from all points to all kcenters Assign each point to the nearest k-center Compute the average of all points assigned to all specific k-centers Replace the k-centers with the new averages }

But! The complexity is pretty high: -k n O(distance metric )num (iterations) 0 Moreover,it can be necessary to send tons of data to each Mapper Node. Depending on your bandwidth and memory available,this could be impossible
But! • The complexity is pretty high: – k * n * O ( distance metric ) * num (iterations) • Moreover, it can be necessary to send tons of data to each Mapper Node. Depending on your bandwidth and memory available, this could be impossible
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 北京大学:《大规模数据处理——云计算 Mass Data Processing Cloud Computing》课程教学资源(PPT课件)MapReduce系统设计与实现 Web Search on MapReduce.ppt
- 北京大学:《大规模数据处理——云计算 Mass Data Processing Cloud Computing》课程教学资源(PPT课件)MapReduce算法设计 Basic MapReduce Algorithm Design.ppt
- 北京大学:《大规模数据处理——云计算 Mass Data Processing Cloud Computing》课程教学资源(PPT课件)MapReduce原理 MapReduce Theory and Practice.ppt
- 北京大学:《大规模数据处理——云计算 Mass Data Processing Cloud Computing》课程教学资源(PPT课件)课程介绍 Introduction to Cloud Computing(主讲:彭波).ppt
- 《大规模数据处理——云计算 Mass Data Processing Cloud Computing》课程教学资源(阅读材料)Data-Intensive Text Processing(MapReduce book 20100307).pdf
- 《大规模数据处理——云计算 Mass Data Processing Cloud Computing》课程教学资源(阅读材料)MapReduce——Simplified Data Processing on Large Clusters.pdf
- 《大规模数据处理——云计算 Mass Data Processing Cloud Computing》课程教学资源(阅读材料)The Google File System(GFS).pdf
- 《大规模数据处理——云计算 Mass Data Processing Cloud Computing》课程教学资源(阅读材料)k-means++——The Advantages of Careful Seeding.pdf
- 《大规模数据处理——云计算 Mass Data Processing Cloud Computing》课程教学资源(阅读材料)Efficient Clustering of High-Dimensional Data Sets with Application to Reference Matching.pdf
- 《大规模数据处理——云计算 Mass Data Processing Cloud Computing》课程教学资源(阅读材料)The Anatomy of a Large-Scale Hypertextual Web Search Engine.pdf
- 上海中医药大学:课程教学大纲汇编合集——教学大纲(计算机中心、图书信息中心).pdf
- 北京中医药大学:《计算机基础》课程教学资源(PPT课件)第8章 模块.ppt
- 北京中医药大学:《计算机基础》课程PPT教学课件(Access 数据库程序设计)包装应用系统.ppt
- 北京中医药大学:《计算机基础》课程教学资源(PPT课件)第7章 宏.ppt
- 北京中医药大学:《计算机基础》课程教学资源(PPT课件)第5章 报表.ppt
- 北京中医药大学:《计算机基础》课程教学资源(教学大纲,Ⅱ).doc
- 北京中医药大学:《计算机基础》课程教学资源(电子教材)《Access 数据库程序设计》第5章 报表.doc
- 北京中医药大学:《计算机基础》课程教学资源(电子教材)《Access 数据库程序设计》第4章 窗体.doc
- 北京中医药大学:《计算机基础》课程教学资源(试卷习题)2009年9月全国计算机等级考试二级笔试试卷——Access 数据库程序设计(含答案).docx
- 北京中医药大学:《计算机基础》课程教学资源(试卷习题)2008年9月计算机等级考试二级(ACCESS真题试卷及答案).docx
- 北京大学:《大规模数据处理——云计算 Mass Data Processing Cloud Computing》课程教学资源(PPT课件)并行与分布式系统基础 Introduction to Distributed Systems.ppt
- 北京大学:《大规模数据处理——云计算 Mass Data Processing Cloud Computing》课程教学资源(PPT课件)分布式文件系统 Distributed File systems.ppt
- 北京大学:《移动计算与无线网络》课程教学资源(学生PPT)课程实验——WLAN性能实证(802.11 Wlan无线通讯实验).ppt
- 北京大学:《移动计算与无线网络》课程教学资源(学生PPT)揭秘WLAN无线链路的丢包规律.ppt
- 北京大学:《移动计算与无线网络》课程教学资源(学生PPT)无线实验——距离障碍物等因素之影响.ppt
- 西安电子科技大学:《信息系统安全》课程教学资源(PPT课件讲稿)第一章 绪论(主讲教师:董庆宽).ppt
- 西安电子科技大学:《现代密码学》课程教学资源(PPT课件讲稿)第三章 分组密码.pptx
- 西安电子科技大学:《现代密码学》课程教学资源(PPT课件讲稿)第五章 消息认证算法.pptx
- 郑州大学:《计算机网络》课程电子教案(课件讲稿)第1章 概述.pdf
- 郑州大学:《计算机网络》课程电子教案(课件讲稿)第2章 物理层.pdf
- 郑州大学:《计算机网络》课程电子教案(课件讲稿)第3章 数据链路层.pdf
- 郑州大学:《计算机网络》课程电子教案(课件讲稿)第4章 网络层.pdf
- 郑州大学:《计算机网络》课程电子教案(课件讲稿)第5章 运输层.pdf
- 郑州大学:《计算机网络》课程电子教案(课件讲稿)第6章 应用层.pdf
- 唐山广播电视大学:Premiere Pro CC视频编辑——期末复习题及答案.doc
- 四川开放大学:《跨境电商》课程教学资源(试卷习题)期末考试试题一(试题).doc
- 四川开放大学:《跨境电商》课程教学资源(试卷习题)期末考试试题一(答案).doc
- 四川开放大学:《跨境电商》课程教学资源(试卷习题)期末考试试题三(试题).doc
- 四川开放大学:《跨境电商》课程教学资源(试卷习题)期末考试试题三(答案).doc
- 四川开放大学:《跨境电商》课程教学资源(试卷习题)期末考试试题二(试题).doc