《力学》课程教学资源(参考资料)斯托克斯力 Stokes flow past a sphere

1 Notes on 1.63 Advanced Environmental Fluid Mechanics Instructor:C.C.Mei,2001 ccmei@mit.edu,1 617 253 2994 December 1,2002 2-5Stokes.tex 2.5 Stokes flow past a sphere [Refs] Lamb:Hydrodynamics Acheson Elementary Fluid Dynamics,p.223 ff One of the fundamental results in low Reynolds hydrodynamics is the Stokes solution for steady flow past a small sphere.The apllicatiuon range widely form the determination of electron charges to the physics of aerosols. The continuity equation reads 7.q=0 (2.5.1) With inertia neglected,the approximate momentum equation is 0=-2+v2g (2.5.2) Physically,the presssure gradient drives the flow by overcoming viscous resistence,but does affect the fluid inertia significantly. Refering to Figure 2.5 for the spherical coordinate system(r,0,o).Let the ambient velocity be upward and along the polar (z)axis:(u,v,w)=(0,0,W).Axial symmetry demands 86=0,andg=(g(,9),9o(,9),0) Eq.(2.5.1)becomes 182gr)+ 18 r2Or ra0 (gosine)=0 (2.5.3) As in the case of rectangular coordinates,we define the stream function to satisify the continuity equation (2.5.3)identically 10b 1∂b 4r=r2sin0∂9' 90= (2.5.4) rsin0 Or At infinity,the uniform velocity W along z axis can be decomposed into radial and polar components 10b 18b 4-Wcos0=2sin 00 e--W sin0-- rsin98r,r~∞ (2.5.5)
1 Notes on 1.63 Advanced Environmental Fluid Mechanics Instructor: C. C. Mei, 2001 ccmei@mit.edu, 1 617 253 2994 December 1, 2002 2-5Stokes.tex 2.5 Stokes flow past a sphere [Refs] Lamb: Hydrodynamics Acheson : Elementary Fluid Dynamics, p. 223 ff One of the fundamental results in low Reynolds hydrodynamics is the Stokes solution for steady flow past a small sphere. The apllicatiuon range widely form the determination of electron charges to the physics of aerosols. The continuity equation reads ∇ · ~q = 0 (2.5.1) With inertia neglected, the approximate momentum equation is 0 = −∇p ρ + ν∇2 ~q (2.5.2) Physically, the presssure gradient drives the flow by overcoming viscous resistence, but does affect the fluid inertia significantly. Refering to Figure 2.5 for the spherical coordinate system (r, θ, φ). Let the ambient velocity be upward and along the polar (z) axis: (u, v, w) = (0, 0, W). Axial symmetry demands ∂ ∂φ = 0, and ~q = (qr(r, θ), qθ(r, θ), 0) Eq. (2.5.1) becomes 1 r2 ∂ ∂r (r2 qr) + 1 r ∂ ∂θ (qθ sin θ) = 0 (2.5.3) As in the case of rectangular coordinates, we define the stream function ψ to satisify the continuity equation (2.5.3) identically qr = 1 r2 sin θ ∂ψ ∂θ , qθ = − 1 r sin θ ∂ψ ∂r (2.5.4) At infinity, the uniform velocity W along z axis can be decomposed into radial and polar components qr = W cos θ = 1 r2 sin θ ∂ψ ∂θ , qθ = −W sin θ = − 1 r sin θ ∂ψ ∂r , r ∼ ∞ (2.5.5)

2 Q Figure 2.5.1:The spherical coordinates The corresponding stream function at infinity follows by integration 2 in0. 2.5.6) Using the vector identity 7×(V×=7(7·)-7d (2.5.7) and (2.5.1),we get g=-V×(7×=-7×6 (2.5.8) Taking the curl of(2.5.2)and using (2.5.8)we get V×(7×G)=0 (2.5.9) After some straightforward algebra given in the Appendix,we can show that g-7× (2.5.10) r sin 0 and (=7×g=V×V× 山eo 包过 82b sin8 1 aψ X (2.5.11) r sin 0 rsin r288 sin0 80 Now from (2.5.9) vx×v×=vxxx(x】=0
2 z y x r o Figure 2.5.1: The spherical coordinates The corresponding stream function at infinity follows by integration ψ = W 2 r2 sin2 θ, r ∼ ∞ (2.5.6) Using the vector identity ∇ × (∇ × ~q) = ∇(∇ · ~q) − ∇2 ~q (2.5.7) and (2.5.1), we get ∇2 ~q = −∇ × (∇ × ~q) = −∇ × ~ζ (2.5.8) Taking the curl of (2.5.2) and using (2.5.8) we get ∇ × (∇ × ~ζ) = 0 (2.5.9) After some straightforward algebra given in the Appendix, we can show that ~q = ∇ × Ã ψ~eφ r sin θ ! (2.5.10) and ~ζ = ∇ × ~q = ∇ × ∇ × Ã ψ~eφ r sin θ ! = − ~eφ r sin θ Ã ∂2ψ ∂r2 + sin θ r2 ∂ ∂θ Ã 1 sin θ ∂ψ ∂θ !! (2.5.11) Now from (2.5.9) ∇ × ∇ × (∇ × ~q) = ∇ × ∇ × " ∇ × Ã ∇ × ψ~eφ r sin θ !# = 0

3 hence,the momentum equation(2.5.9)becomes a scalar equation for 2 sin 1 2 ψ=0 (2.5.12) 8r2 r280 sin00 The boundary conditions on the sphere are gr=0 go=0 on r=a (2.5.13) The boundary conditions at oo is ψ→ 22n20 (2.5.14) Let us try a solution of the form: (r,)=f(r)sin20 (2.5.15) then f is governed by the equi-dimensional differential equation: d 272 dr2-2 f=0 (2.5.16) whose solutions are of the form f(r)o r",It is easy to verify that n=-1,1,2,4 so that )+Br+Cr+Dr or =m29[2+Br+c2+D To satisfy (2.5.14)we set D=0,C=W/2.To satisfy (2.5.13)we use (2.5.4)to get W A B 0三,+元女。=09如=0=w-A+B=0 a Hence A=-Wa, 1 Finally the stream function is W「 a3 3ar = sin20 2 2+2r 2 (2.5.17) Inside the parentheses,the first term corresponds to the uniform flow,and the second term to the doublet;together they represent an inviscid fow past a sphere.The third term is called the Stokeslet,representing the viscous correction. The velocity components in the fluid are:(cf.(2.5.4): Wcos 1+ 3a1 gr i 23-27 (2.5.18) ge =-Wsin0 a3 3a 1- 43 (2.5.19) 4r
3 hence, the momentum equation (2.5.9) becomes a scalar equation for ψ. Ã ∂2 ∂r2 + sin θ r2 ∂ ∂θ Ã 1 sin θ ∂ ∂θ!!2 ψ = 0 (2.5.12) The boundary conditions on the sphere are qr = 0 qθ = 0 on r = a (2.5.13) The boundary conditions at ∞ is ψ → W 2 r2 sin2 θ (2.5.14) Let us try a solution of the form: ψ(r, θ) = f(r) sin2 θ (2.5.15) then f is governed by the equi-dimensional differential equation: " d2 dr2 − 2 r2 #2 f = 0 (2.5.16) whose solutions are of the form f(r) ∝ rn, It is easy to verify that n = −1, 1, 2, 4 so that f(r) = A r + Br + Cr2 + Dr4 or ψ = sin2 θ ∙A r + Br + Cr2 + Dr4 ¸ To satisfy (2.5.14) we set D = 0, C = W/2. To satisfy (2.5.13) we use (2.5.4) to get qr =0= W 2 + A a3 + B a = 0, qθ =0= W − A a3 + B a = 0 Hence A = 1 4 W a3 , B = −3 4 W a Finally the stream function is ψ = W 2 " r2 + a3 2r − 3ar 2 # sin2 θ (2.5.17) Inside the parentheses, the first term corresponds to the uniform flow, and the second term to the doublet; together they represent an inviscid flow past a sphere. The third term is called the Stokeslet, representing the viscous correction. The velocity components in the fluid are: (cf. (2.5.4) : qr = W cos θ " 1 + a3 2r3 − 3a 2r # (2.5.18) qθ = −W sin θ " 1 − a3 4r3 − 3a 4r # (2.5.19)

4 2.5.1 Physical Deductions 1.Streamlines:With respect to the the equator along 0=/2,cos 0 and gr are odd while sin 0 and go are even.Hence the streamlines(velocity vectors)are symmetric fore and aft. 2.Vorticity: 5-SoEo 18(rge)18gr sin r08 >Wa- 3.Pressure From the r-component of momentum equation Op uWa Or cos(=-V×(V×) Integrating with respect to r from r to oo,we get 3 uWa p=p∞一 23c0s9 (2.5.20) 4.Stresses and strains: 1 8gr =W cos0 3a3 Or 2r2 2r4 On the sphere,r=a,err =0 hence orr=0 and Trr =-p+Orr=-Poo+ 3uW cos0 (2.5.21)) 2a On the other hand 9 10g,3Wa -sin0 r00 2r4 Hence at r=a: 3uW T0=00=er0=-2a sin (2.5.22) The resultant stress on the sphere is parallel to the z axis. ∑:=Trr COS9-Tr8sin0=-P Cos0+ 3uw 2a The constant part exerts a net drag in z direction D= de sin :==a -4ra2=6πμWa (2.5.23) This is the celebrated Stokes formula. A drag coefficient can be defined as D 6πuWa 24 24 Co-pWiza=ipWira =eW(2a)= (2.5.24) Rea
4 2.5.1 Physical Deductions 1. Streamlines: With respect to the the equator along θ = π/2, cos θ and qr are odd while sin θ and qθ are even. Hence the streamlines (velocity vectors) are symmetric fore and aft. 2. Vorticity: ~ζ = ζφ~eφ Ã 1 r ∂(rqθ) ∂r − 1 r ∂qr ∂θ ! ~eφ = −3 2 W asin θ r2 ~eφ 3. Pressure : From the r-component of momentum equation ∂p ∂r = µW a r3 cos θ(= −µ∇ × (∇ × ~q)) Integrating with respect to r from r to ∞, we get p = p∞ − 3 2 µW a r3 cos θ (2.5.20) 4. Stresses and strains: 1 2 err = ∂qr ∂r = W cos θ Ã 3a 2r2 − 3a3 2r4 ! On the sphere, r = a, err = 0 hence σrr = 0 and τrr = −p + σrr = −p∞ + 3 2 µW a cos θ (2.5.21) On the other hand erθ = r ∂ ∂r µqθ r ¶ + 1 r ∂qr ∂θ = −3 2 W a3 r4 sin θ Hence at r = a: τrθ = σrθ = µerθ = −3 2 µW a sin θ (2.5.22) The resultant stress on the sphere is parallel to the z axis. Σz = τrr cos θ − τrθ sin θ = −p∞ cos θ + 3 2 µW a The constant part exerts a net drag in z direction D = Z 2π o adφ Z π o dθ sin θΣz == 3 2 µW a 4πa2 = 6πµW a (2.5.23) This is the celebrated Stokes formula. A drag coefficient can be defined as CD = D 1 2 ρW2πa2 = 6πµW a 1 2 ρW2πa2 = 24 ρW(2a) µ = 24 Red (2.5.24)

5 5.Fall velocity of a particle through a fluid.Equating the drag and the buoyant weight of the eparticle 6iwa=行en.-pn9 hence 2a2△ 217.8 "Sp v Pf in cgs units.For a sand grain in water, =1=1.5,v=10-2cm2/5 △2=2.5-1 W。=32,670a2cm/s (2.5.25) To have some quantitative ideas,let us consider two sand of two sizes a=10-2cm=10-4m:W。=3.27cm/s; a=10-3cm=10-5=10um,W。=0.0327cm/s=117cm/hr For a water droplet in air, 2=1 10-=103,v=0.15cm2/sec then -0 (2.5.26) in cgs units.If a 10-3 cm 10um,then Wo =1.452 cm/sec. Details of derivation Details of(2.5.10). 1 eo rsin beo r2 sin0 品 品 0 0 1. ∂b 1 =e r2 sin 0 00 rsin0 Or
5 5. Fall velocity of a particle through a fluid. Equating the drag and the buoyant weight of the eparticle 6πµWoa = 4π 3 a3 (ρs − ρf )g hence Wo = 2 9 g à a2 ν ∆ρ ρf ! = 217.8 à a2 ν ∆ρ ρf ! in cgs units. For a sand grain in water, ∆ρ ρf = 2.5 − 1 1 = 1.5, ν = 10−2 cm2 /s Wo = 32, 670 a2 cm/s (2.5.25) To have some quantitative ideas, let us consider two sand of two sizes : a = 10−2 cm = 10−4 m : Wo = 3.27cm/s; a = 10−3 cm = 10−5 = 10µm, Wo = 0.0327cm/s = 117cm/hr For a water droplet in air, ∆ρ ρf = 1 10−3 = 103 , ν = 0.15 cm2 /sec then Wo = (217.8)103 0.15 a2 (2.5.26) in cgs units. If a = 10−3 cm = 10µm, then Wo = 1.452 cm/sec. Details of derivation Details of (2.5.10). ∇ × Ã ψ r sin θ ~eφ ! = 1 r2 sin θ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ~er ~eθ r sin θ~eφ ∂ ∂r ∂ ∂θ ∂ ∂φ 0 0 ψ ¯ ¯ ¯ ¯ ¯ ¯ ¯ = ~er à 1 r2 sin θ ∂ψ ∂θ ! − ~eθ à 1 r sin θ ∂ψ ∂r !

6 Details of(2.5.11). Vxvx wea =V×q rsin 1 rsin beo 8 8 8 r2 sin0 86 地 -10地 T2 sin 0 80 sin0 Or 0 、 ee 「ao sin 8 10 rsin Or2 r2 sin00
6 Details of (2.5.11). ∇ × ∇ × ψ~eφ r sin θ = ∇ × ~q = 1 r2 sin θ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ~er r~eθ r sin θ~eφ ∂ ∂r ∂ ∂θ ∂ ∂φ 1 r2 sin θ ∂ψ ∂θ −1 sin θ ∂ψ ∂r 0 ¯ ¯ ¯ ¯ ¯ ¯ ¯ = ~eθ r sin θ " ∂2φ ∂r2 + sin θ r2 ∂ ∂θ Ã 1 sin θ ∂ψ ∂θ !#
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《力学》课程教学资源(参考资料)惯量椭球 Stereo 3D Simulation of Rigid Body Inertia Ellipsoid for The Purpose of Unmanned Helicopter Autopilot Tuning.pdf
- 《力学》课程教学资源(参考资料)物理摆 Physical Pendulum.pdf
- 《力学》课程教学资源(参考资料)Bertrand law(Proof of Bertrand's Theorem).pdf
- 《力学》课程教学资源(参考资料)其它方法推导洛伦兹变换(2/2)Derivation of the Lorentz transformation without the use of Einstein’s second postulate.pdf
- 《力学》课程教学资源(参考资料)其它方法推导洛伦兹变换(1/2)Getting the Lorentz transformations without requiring an invariant speed.pdf
- 《力学》课程教学资源(参考资料)拉格朗日点的稳定性(2/2)Stability of the Lagrange Points, L4 and L5.pdf
- 《力学》课程教学资源(参考资料)拉格朗日点的稳定性(1/2)Stability of Lagrange Points - James Webb Space Telescope.pdf
- 《力学》课程教学资源(参考资料)对称性与守恒量(2/2)守恒律.pdf
- 《力学》课程教学资源(参考资料)对称性与守恒量(1/2)时空对称性与守恒律——牛顿力学.pdf
- 《力学》课程教学资源(参考资料)牛顿第二定律的实验验证 Laboratory Test of Newton’s Second Law for Small Accelerations.pdf
- 《力学》课程教学资源(参考资料)曲线坐标系——两种正交曲线坐标系单位矢量间的一般表达式.pdf
- 《力学》课程教学资源(参考资料)普朗克常数和普朗克质量.pdf
- 《力学》课程教学资源(参考资料)球坐标和柱坐标系中的加速度.pdf
- 《力学》课程教学资源(参考资料)球坐标系中的速度和加速度.doc
- 西南交通大学:《工程塑性力学》课程教学资源(教案讲义)第三章 应力和应变分析(3.1)应力分析.pdf
- 西南交通大学:《工程塑性力学》课程教学资源(教案讲义)第一章 金属材料的塑性性质(授课老师:张旭).pdf
- 山西能源学院:《工程流体力学》课程教学资源(PPT课件讲稿)第四章 流体运动学和流体动力学基础.pptx
- 山西能源学院:《工程流体力学》课程教学资源(PPT课件讲稿)第六章 管内流动和水力计算、液体出流.pptx
- 山西能源学院:《工程流体力学》课程教学资源(PPT课件讲稿)第五章 相似原理和量纲分析.pptx
- 山西能源学院:《工程流体力学》课程教学资源(PPT课件讲稿)第二章 流体及其物理性质.pptx
- 《力学》课程教学资源(参考资料)高速运动物体的表观长度和Terrell转动.pdf
- 《力学》课程教学资源(参考资料)孪生子佯谬(双生子佯谬)Special relativity and spacetime.pdf
- 《力学》课程教学资源(参考资料)拉普拉斯-隆格-楞次矢量 Runge-Lenz-Symmetries.pdf
- 四川开放大学:《工程力学》课程教学资源(基础试题及答案).doc
- 中国科学技术大学:《热力学与统计物理》课程教学资源(课件讲义)引言、热力学第一定律(主讲:翁明其).pdf
- 中国科学技术大学:《热力学与统计物理》课程教学资源(课件讲义)第三章 热力学函数.pdf
- 中国科学技术大学:《热力学与统计物理》课程教学资源(课件讲义)第二章 热力学第二定律.pdf
- 中国科学技术大学:《热力学与统计物理》课程教学资源(课件讲义)第七章 几率法——Boltzmann统计(近独立子系组成系统的统计理论).pdf
- 中国科学技术大学:《热力学与统计物理》课程教学资源(课件讲义)第五章 多组元系统、化学平衡.pdf
- 中国科学技术大学:《热力学与统计物理》课程教学资源(课件讲义)第四章 相变.pdf
- 中国科学技术大学:《热力学与统计物理》课程教学资源(课件讲义)第六章 统计物理基本假设(等几率假设).pdf
- 中国科学技术大学:《热力学与统计物理》课程教学资源(课件讲义)第七章 几率法——Bose统计和Fermi统计(近独立子系组成系统的统计理论).pdf
- 中国科学技术大学:《热力学与统计物理》课程教学资源(课件讲义)第九章 涨落.pdf
- 中国科学技术大学:《热力学与统计物理》课程教学资源(课件讲义)第八章 系综法(系综统计).pdf
- 中国科学技术大学:《热力学与统计物理》课程教学资源(课件讲义)第九章 非平衡热力学与统计理论.pdf
- 吉林大学:《土质学与土力学》课程教学资源(试卷习题)土力学试题及答案(二).doc
- 吉林大学:《土质学与土力学》课程教学资源(试卷习题)土力学试题及答案(一).doc
- 吉林大学:《土质学与土力学》课程电子教案(PPT课件)第10章 土坡稳定分析(1/2).ppt
- 吉林大学:《土质学与土力学》课程电子教案(PPT课件)第10章 土坡稳定分析(2/2).ppt
- 吉林大学:《土质学与土力学》课程电子教案(PPT课件)第11章 土的基本动力特性.ppt