湖南工业大学(株洲工学院):《高等数学》课程教学资源(PPT课件讲稿)第六节 高斯(Gauss)公式通量与散度

第六节高斯( Gauss)公式 通量与散度 四一、高斯公式 简单的应用 四三、物理意义一通量与散度 巴四、小结思考题

生一、高斯公式 设空间闭区域Q由分片光滑的闭曲面Σ围成 王函数P(x3)、Q(x,:)、R(xy2在上具有 阶连续偏导数,则有公式 OP 00 OR ax可hp=JPh+Qhd+Rh 庄∫ ∑ 工工工 或 aP a0 OR aetat az)o (p cos al+ ocos B+ rcos y ds 上页
设空间闭区域由分片光滑的闭曲面Σ围成, 函数P( x, y,z)、Q( x, y,z)、R( x, y,z)在 上具有 一阶连续偏导数, 则有公式 = + + + + dv Pdydz Qdzdx Rdxdy z R y Q x P ( ) 一、高 斯 公 式 P Q R dS dv z R y Q x P ( cos cos cos ) ( ) = + + + + 或

这里∑是的整个边界曲面的外侧, 黑cosa,cos月,cosy是Σ上点(x,y,x)处的法向 量的方向余弦 证明设闭区域Ω在面xOy 上的投影区域为D ry cΣ由Σ1,∑和Σ,三部分组成 Q Σ1:3=x1(x,y) ∑ 工工 Σ2了=2(x,y) ∑ 3 上页
这里是的整个边界曲面的外侧, cos,cos ,cos 是上点(x, y,z)处的法向 量的方向余弦. 证明 设闭区域在面xoy 上的投影区域为Dxy. x y z o 由1 ,2和3三部分组成, ( , ) 1 : 1 z = z x y ( , ) 2 : 2 z = z x y 3 1 2 3 Dxy

根据三重积分的计算法 OR d=』 2(x,)aR dz ]dxdy oz D x,y)az ∫x,y,a(x,y)-lx,,z(x,y)d小 根据曲面积分的计算法 Σ取下侧,Σ2取上侧,Σ3取外侧) ∫(x,)d=-』xyz(x,y)d, 上页
根据三重积分的计算法 dz dxdy z R dy z R Dxy z x y z x y = { } ( , ) ( , ) 2 1 { [ , , ( , )] [ , , ( , )]} . = 2 − 1 Dxy R x y z x y R x y z x y dxdy 根据曲面积分的计算法 ( , , ) [ , , ( , )] , 1 1 = − Dxy R x y z dxdy R x y z x y dxdy (1取下侧, 2取上侧, 3 取外侧)

生∫x3)的=x3( 2 R(x,y,孔)dcd小y=0 牛于是∫R(x,)d ∑ =Rx,2(x,-{x,y,x(x,)d D xy OR 巾引R(x,y,x)dd z 上页
( , , ) [ , , ( , )] , 2 2 = Dxy R x y z dxdy R x y z x y dxdy { [ , , ( , )] [ , , ( , )]} , = 2 − 1 Dxy R x y z x y R x y z x y dxdy 于是 R(x, y,z)dxdy ( , , ) 0. 3 = R x y z dxdy ( , , ) . = dv R x y z dxdy z R

P 同 理 P y dz e Q O = 和并以上三式得: P Pe ndz Q d x R 中y O 斯 公 式
( , , ) , = dv P x y z dydz x P 同理 ( , , ) , = dv Q x y z dzdx y Q = + + + + dv Pdydz Qdzdx Rdxdy z R y Q x P ( ) ------------------高斯公式 和并以上三式得:

2的两类曲面积分之间的关系知 aP 80 aR +di ay az H(P cos a+2 cos B+Rcos r)ds ∑ Gauss公式的实质 表达了空间闭区域上的三重积分与其边界 的面上的曲面积分之间的关系 上页
Gauss公式的实质 表达了空间闭区域上的三重积分与其边界 曲面上的曲面积分之间的关系. ( cos cos cos ) . ( ) = + + + + P Q R dS dv z R y Q x P 由两类曲面积分之间的关系知

庄二、简单的应用 例1计算曲面积分 ∫(x-y)ap+(y-x)xd ∑ 其中∑为柱面x2+y=1及平 面x=0,乙=3所围成的空间闭 工工工 区域g的整个边界曲面的外侧 上解P=(y-)x,Q=0,x R=x-y 上页
二、简单的应用 例1 计算曲面积分 (x − y)dxdy + ( y − z)xdydz 其中Σ为柱面 1 2 2 x + y = 及平 面z = 0,z = 3所围成的空间闭 区域的整个边界曲面的外侧. x o z y 1 1 3 解 , ( ) , 0, R x y P y z x Q = − = − =

aP 90.aR 00 =y- =0 a 王原式=(-addh (利用柱面坐标得) Pr (rsin 6-zrdrdedz y Q x 9丌 2 上页
, 0, = 0, = = − z R y Q y z x P 原式 = ( y − z)dxdydz = (rsin − z)rdrddz . 2 9 = − (利用柱面坐标得) x o z y 1 1 3

使用Guas公式时应注意 1.P,Q,R是对什么变量求偏导数; 2.是否满足高斯公式的条件; 3.∑是取闭曲面的外侧 上页
使用Guass公式时应注意: 1.P,Q,R是对什么变量求偏导数; 2.是否满足高斯公式的条件; 3.Σ是取闭曲面的外侧
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 湖南工业大学(株洲工学院):《高等数学》课程教学资源(PPT课件讲稿)第一节 函数.ppt
- 湖南工业大学(株洲工学院):《高等数学》课程教学资源(PPT课件讲稿)第七节 可降阶的高阶微分方程.ppt
- 湖南工业大学(株洲工学院):《高等数学》课程教学资源(PPT课件讲稿)第六节 欧拉-柯西近似法.ppt
- 湖南工业大学(株洲工学院):《高等数学》课程教学资源(PPT课件讲稿)第八节 高阶线性微分方程.ppt
- 湖南工业大学(株洲工学院):《高等数学》课程教学资源(PPT课件讲稿)第十节 二阶常系数非齐次线性微分方程.ppt
- 湖南工业大学(株洲工学院):《高等数学》课程教学资源(PPT课件讲稿)第十三节 常系数线性微分方程组解法举例.ppt
- 湖南工业大学(株洲工学院):《高等数学》课程教学资源(PPT课件讲稿)第十二节 微分方程的幂级数解法.ppt
- 湖南工业大学(株洲工学院):《高等数学》课程教学资源(PPT课件讲稿)第十一节 欧拉方程.ppt
- 湖南工业大学(株洲工学院):《高等数学》课程教学资源(PPT课件讲稿)第九节 二阶常系数齐次线性微分方程.ppt
- 湖南工业大学(株洲工学院):《高等数学》课程教学资源(PPT课件讲稿)第五节 全微分方程.ppt
- 湖南工业大学(株洲工学院):《高等数学》课程教学资源(PPT课件讲稿)第四节 一阶线性微分方程.ppt
- 湖南工业大学(株洲工学院):《高等数学》课程教学资源(PPT课件讲稿)第一节 微分方程的基本概念.ppt
- 湖南工业大学(株洲工学院):《高等数学》课程教学资源(PPT课件讲稿)第三节 齐次方程.ppt
- 湖南工业大学(株洲工学院):《高等数学》课程教学资源(PPT课件讲稿)第二节 可分离变量的微分方程.ppt
- 湖南工业大学(株洲工学院):《高等数学》课程教学资源(PPT课件讲稿)第十节 傅里叶级数的复数形式.ppt
- 湖南工业大学(株洲工学院):《高等数学》课程教学资源(PPT课件讲稿)第七节 傅里叶(Fourier)级数.ppt
- 湖南工业大学(株洲工学院):《高等数学》课程教学资源(PPT课件讲稿)第八节 正弦级数和余弦级数.ppt
- 株洲工学院:株洲工学院:《高等数学》第九节 周期为2L的周期函数的傅里叶级数.ppt
- 株洲工学院:株洲工学院:《高等数学》第五节 函数的幂级数展开式的应用.ppt
- 株洲工学院:株洲工学院:《高等数学》第六节 函数项级数的一致收敛性及一致收敛级数的基本性质.ppt
- 太原理工大学:《高等数学》课程PPT教学课件(习题题解)第一章函数习题课.ppt
- 太原理工大学:《高等数学》课程PPT教学课件(习题题解)第十章曲线积分与曲面积习题课.ppt
- 太原理工大学:《高等数学》课程PPT教学课件(习题题解)第十一章无穷级数习题课.ppt
- 太原理工大学:《高等数学》课程PPT教学课件(习题题解)第十二章微分方程习题课.ppt
- 太原理工大学:《高等数学》课程PPT教学课件(习题题解)第十二章(12-2)导数与微分习题课.ppt
- 太原理工大学:《高等数学》课程PPT教学课件(习题题解)第十三章中值定理与导数的应用习题课.ppt
- 太原理工大学:《高等数学》课程PPT教学课件(习题题解)第四章不定积分习题课.ppt
- 太原理工大学:《高等数学》课程PPT教学课件(习题题解)第五章定积分习题课.ppt
- 太原理工大学:《高等数学》课程PPT教学课件(习题题解)第六章定积分的应用习题课.ppt
- 太原理工大学:《高等数学》课程PPT教学课件(习题题解)第二章导数与微分.ppt
- 太原理工大学:《高等数学》课程PPT教学课件(习题题解)第八章多元函数微分法及其应用习题课.ppt
- 太原理工大学:《高等数学》课程PPT教学课件(习题题解)第九章多重积分习题课.ppt
- 西南财经大学:《微积分》课程教学资源(PPT课件讲稿)第十章(10-2)一阶微分方程.ppt
- 西南财经大学:《微积分》课程教学资源(PPT课件讲稿)第四章(4-7)导数在经济中的应用.ppt
- 西南财经大学:《微积分》课程教学资源(PPT课件讲稿)第三章(3-1)函教的导数与微分.ppt
- 西南财经大学:《微积分》课程教学资源(PPT课件讲稿)第四章(4-6)函数作图的基本步骤与方法.ppt
- 西南财经大学:《微积分》课程教学资源(PPT课件讲稿)第八章(8-2)多元函数概念.ppt
- 西南财经大学:《微积分》课程教学资源(PPT课件讲稿)第六章(6-2)定积分的的性质.ppt
- 西南财经大学:《微积分》课程教学资源(PPT课件讲稿)第七章(7-5)函数的幂级数展开式.ppt
- 西南财经大学:《微积分》课程教学资源(PPT课件讲稿)第六章 定积分及其应用.ppt