香港科技大学:Latent Tree Models Part III:Learning Algorithms

AAAl 2014 Tutorial Latent tree models Part Il: Learning Algorithms Nevin L Zhang Dept. of computer Science Engineering The hong Kong Univ of Sci. Tech http://www.cse.ust.hk/lzhang
Latent Tree Models Part III: Learning Algorithms Nevin L. Zhang Dept. of Computer Science & Engineering The Hong Kong Univ. of Sci. & Tech. http://www.cse.ust.hk/~lzhang AAAI 2014 Tutorial

Learning latent Tree Models X1)(X2)(X3 X5(X6)(X7 To Determine 1. Number of latent variables 2. Cardinality of each latent variable 3. Model structure 4. Probability distributions Model selection :1.2.3 Parameter estimation 4 AAAl2014 Tutorial Nevin L Zhang HKUST
AAAI 2014 Tutorial Nevin L. Zhang HKUST 2 To Determine 1. Number of latent variables 2. Cardinality of each latent variable 3. Model structure 4. Probability distributions Learning Latent Tree Models Model selection: 1, 2, 3 Parameter estimation: 4

Light Bulb lustration Run interactive program"LightBulbllustration jar' Ilustrate the possibility of inferring latent variables and latent structures from observed co-occurrence patterns 6900 「上一步[下一步一「结果 「暂停加速 start next result faster slower
AAAI 2014 Tutorial Nevin L. Zhang HKUST 3 Run interactive program “LightBulbIllustration.jar” Illustrate the possibility of inferring latent variables and latent structures from observed co-occurrence patterns. Light Bulb Illustration

Part lll: Learning algorithms Introduction Search-based algorithms Algorithms based on variable clustering Distance-based algorithms Empirical comparisons Spectral methods for parameter estimation AAAl2014 Tutorial Nevin L Zhang HKUST
AAAI 2014 Tutorial Nevin L. Zhang HKUST 4 Part III: Learning Algorithms Introduction Search-based algorithms Algorithms based on variable clustering Distance-based algorithms Empirical comparisons Spectral methods for parameter estimation

Search Algorithms a search algorithm explores the space of regular models guided by a scoring function Start with an initial model s terate until model score ceases to increase Modify the current model in various ways to generate a list of candidate models Evaluate the candidate models using the scoring function Pick the best candidate model What scoring function to use? How do we evaluate candidate models? This is the model selection problem AAAl2014 Tutorial Nevin L Zhang HKUST 5
AAAI 2014 Tutorial Nevin L. Zhang HKUST 5 A search algorithm explores the space of regular models guided by a scoring function: Start with an initial model Iterate until model score ceases to increase Modify the current model in various ways to generate a list of candidate models. Evaluate the candidate models using the scoring function. Pick the best candidate model What scoring function to use? How do we evaluate candidate models? This is the model selection problem. Search Algorithms

Model selection criteria Bayesian score: posterior probability P(mD P(mD)=P(mP(D m)/P(D) =P(m)P(DIm, e) P(e m)de/P(DI BIC Score: Large sample approximation of bayesian score BIC(m D)=log P(D/m, 8-d/2 logN d: number of free parameters; n is the sample size 8*: MLE of 0, estimated using the Em algorithm Likelihood term of bic Measure how well the model fits data Second term Penalty for model complexity. The use of the bic score indicates that we are looking for a model that fits the data well, and at the same time, not overly complex AAAl2014 Tutorial Nevin L Zhang HKUST
AAAI 2014 Tutorial Nevin L. Zhang HKUST 6 Bayesian score: posterior probability P(m|D) P(m|D) = P(m)P(D|m) / P(D) = P(m)∫ P(D|m, θ) P(θ |m) dθ / P(D) BIC Score: Large sample approximation of Bayesian score BIC(m|D) = log P(D|m, θ*) – d/2 logN d : number of free parameters; N is the sample size. θ*: MLE of θ, estimated using the EM algorithm. Likelihood term of BIC: Measure how well the model fits data. Second term: Penalty for model complexity. The use of the BIC score indicates that we are looking for a model that fits the data well, and at the same time, not overly complex. Model Selection Criteria

Model selection criteria AlC(Akaike, 1974) AlC(m D)=log P(DIm, 8*)-d/2 holdout likelihood Data=> Training set, validation set Model parameters estimated based on the training set s Quality of model is measured using likelihood on the validation set Cross validation too expensive AAAl2014 Tutorial Nevin L Zhang HKUST
AAAI 2014 Tutorial Nevin L. Zhang HKUST 7 AIC (Akaike, 1974): AIC(m|D) = log P(D|m, θ*) – d/2 Holdout likelihood Data => Training set, validation set. Model parameters estimated based on the training set. Quality of model is measured using likelihood on the validation set. Cross validation: too expensive Model Selection Criteria

Search Algorithms Double hill climbing (DHC),(zhang 2002, 2004) )7 manifest variables Single hill climbing( SHC),(Zhang and Kocka 2004 12 manifest variables HeuristIc SHC (HSHC),(Zhang and Kocka 2004) 50 manifest variables EAST, ( Chen et al 2011) 100+ manifest variables AAAl2014 Tutorial Nevin L Zhang HKUST
AAAI 2014 Tutorial Nevin L. Zhang HKUST 8 Search Algorithms Double hill climbing (DHC), (Zhang 2002, 2004) 7 manifest variables. Single hill climbing (SHC), (Zhang and Kocka 2004) 12 manifest variables Heuristic SHC (HSHC), (Zhang and Kocka 2004) 50 manifest variables EAST, (Chen et al 2011) 100+ manifest variables

Double Hill climbing ( DHC) Two search procedures s One for model structure One for cardinalities of latent variables Very inefficient. Tested only on data sets with 7 or fewer variables (Zhang 2004) DHC tested on synthetic and real-world data sets, together with BIC AIC, and Holdout likelihood respectively Best models found when bic was used So subsequent work based on bIC AAAl2014 Tutorial Nevin L Zhang HKUST
AAAI 2014 Tutorial Nevin L. Zhang HKUST 9 Two search procedures One for model structure One for cardinalities of latent variables. Very inefficient. Tested only on data sets with 7 or fewer variables. (Zhang 2004) DHC tested on synthetic and real-world data sets, together with BIC, AIC, and Holdout likelihood respectively. Best models found when BIC was used. So subsequent work based on BIC. Double Hill Climbing (DHC)

Single Hill Climbing (HSC) Determines both model structure and cardinalities of latent variables using a single search procedure Uses five search operators Node Introduction (ND) Node Deletion(ND) Node Relation (NR) State Introduction (SI) State Deletion (SI) AAAl2014 Tutorial Nevin L Zhang HKUST 10
AAAI 2014 Tutorial Nevin L. Zhang HKUST 10 Determines both model structure and cardinalities of latent variables using a single search procedure. Uses five search operators Node Introduction (NI) Node Deletion (ND) Node Relation (NR) State Introduction (SI) State Deletion (SI) Single Hill Climbing (HSC)
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 四川大学:Object-Oriented Design and Programming(Java,PPT课件)Advanced Class Design.ppt
- 《计算机组成原理》课程教学资源(PPT课件讲稿)第6章 总线结构.ppt
- 南京航空航天大学:《C++程序设计》课程教学资源(PPT课件)第1章 C++程序设计基础(主讲:陈哲).ppt
- 《Excel实用技术基础》课程教学资源(PPT课件讲稿)Excel 技术基础、数据管理.ppt
- 《计算机系统》课程教学资源(PPT课件讲稿)第六章 设备管理 Devices Management.ppt
- Introduction to XML IR(PPT讲稿).ppt
- 中国传媒大学(北京广播学院):《计算机网络》课程教学资源(PPT课件讲稿)第五章 网络层 The Network Layer.ppt
- 山东大学:《微机原理及单片机接口技术》课程教学资源(PPT课件讲稿)第六章 中断(主讲:刘忠国).ppt
- 《工程计算软件》课程教学资源(PPT课件讲稿)第四章 Maple简介.ppt
- 中国科学技术大学:QuickPass系统的排队问题(PPT讲座,谢瑶).ppt
- 中国科学技术大学:《网络信息安全 NETWORK SECURITY》课程教学资源(PPT课件讲稿)第十章 入侵检测系统(主讲:肖明军).ppt
- 东南大学:《数据结构》课程教学资源(PPT课件讲稿)第五章 树(主讲:方效林).ppt
- 西南民族大学:《软件需求分析与总体设计》课程教学资源(PPT课件讲稿)软件总体(概要)设计.ppt
- 北京航空航天大学:Graph Search - a New Paradigm for Social Computing.pptx
- 清华大学:《计算机网络》课程教学资源(PPT课件讲稿)Lecture 4 Routing.pptx
- Homomorphic Secret Sharing:Low-End HSS from OWF、HSS for Branching Programs from DDH、The HSS Construction.ppsx
- 四川大学:软件设计工具(PPT课件讲稿)Software design tool.ppt
- 《图像处理与计算机视觉 Image Processing and Computer Vision》课程教学资源(PPT课件讲稿)Chapter 02 Image processing and computer vision(Camera models and parameters).pptx
- 《数据结构》课程教学资源(PPT课件讲稿)第九章 排序.ppt
- 福建工程学院:《软件工程》课程教学资源(实验指导书).doc
- 《多媒体教学软件设计》课程教学资源(PPT课件讲稿)第3章 多媒体教学软件开发平台(Authorware).ppt
- 河南中医药大学(河南中医学院):《网络技术实训》课程教学资源(PPT课件讲稿)第9讲 通过VPN访问企业网内部服务器设计讨论.pptx
- 四川大学:《操作系统 Operating System》课程教学资源(PPT课件讲稿)Chapter 2 Operating System Overview.ppt
- 《数据结构 Data Structure》课程教学资源(PPT课件讲稿)第三章 栈和队列.ppt
- IS6000 – Seminar 8 Research Methods – Case Study – Action Research.pptx
- 《编译原理》课程教学资源(PPT课件讲稿)上下文无关文法——自顶向下分析.pptx
- 《计算机应用基础》课程教学资源(PPT讲稿)统考考前辅导.ppt
- Cassandra and Sigmod contest.pptx
- 上海交通大学:《数字图像处理 Digital Image Processing》课程教学资源(PPT课件讲稿,第三版)Chapter 9 Morphological Image Processing.pptx
- 南京航空航天大学:《模式识别》课程教学资源(PPT讲稿)Model Selection for SVM & Our intent works.ppt
- 中国科学技术大学:《微机原理》课程教学资源(PPT课件讲稿)第八章 中断系统.pptx
- 《单片机原理及应用》课程教学资源(PPT课件讲稿)第3章 MCS-51单片机的指令系统.pptx
- 合肥工业大学:《网络安全概论》课程教学资源(PPT课件讲稿)无线网络安全.ppt
- 《计算机辅助设计——CAD制图》课程标准.pdf
- 《Link Layer Computer Networking:A Top Down Approach》课程教学资源(PPT课件讲稿)Chapter 5 The Data Link Layer.ppt
- 《计算机网络》课程教学资源(PPT课件讲稿)Chapter 06 广域网技术.ppt
- 《电脑组装与维护实例教程》教学资源(PPT课件讲稿)第13章 计算机的保养.ppt
- 中国人民大学:A Survey on PIM(PPT讲稿).ppt
- 河南中医药大学(河南中医学院):《计算机网络》课程教学资源(PPT课件讲稿)第二章 物理层(阮晓龙).pptx
- 西安电子科技大学:《现代密码学》课程教学资源(PPT课件讲稿)第八章 密钥分配与密钥管理.pptx