中国高校课件下载中心 》 教学资源 》 大学文库

《太空生物工程与生命支撑》(英文版)sbe kinem lec

文档信息
资源类别:文库
文档格式:PDF
文档页数:26
文件大小:648.95KB
团购合买:点击进入团购
内容简介
Musculoskeletal Dynamics Grant Schaffner
刷新页面文档预览

Musculoskeletal Dynamics SLate supped cal Engineerin Grant Schaffner ATA Engineering, Inc H arv ard Medical ACHU FTECHN

Musculoskeletal Dynamics Grant Schaffner ATA Engineering, Inc

What is musculoskeletal dynamics pace Biomedical Engineerin Life Support Modeling the human body and associated objects as a system of linked rigid segments Formulation of the equations of motion for this system Computational simulation of motion

What is musculoskeletal dynamics? • Modeling the human body and associated objects as a system of linked rigid segments • Formulation of the equations of motion for this system • Computational simulation of motion Z X q1 q2 q3

What is it useful for? pace Biomedical Engineerin Life Support 1. Task feasibility Range of motion studies Strength requirements (joint torques) 2. Joint forces(skeletal loading) 3. Spacesuit design(modeling suit mechanics) 4 Countermeasure evaluation 5. Understanding complex dynamics EVA tasks, e.g., Satellite capture, mass manipulation(ISS assembly /ORU replacement Artificial / reduced gravity C Video*)

What is it useful for? 1. Task feasibility • Range of motion studies • Strength requirements (joint torques) 2. Joint forces (skeletal loading) 3. Spacesuit design (modeling suit mechanics) 4. Countermeasure evaluation 5. Understanding complex dynamics • EVA tasks, e.g., Satellite capture, mass manipulation (ISS assembly / ORU replacement) • Artificial / reduced gravity (* Video *)

EVA Mass Manipulation Simulation pace Biomedical Engineerin Life Support Joint Angle Joint Torque 10 -60 -30 10 Time [sec Time [sec 30 20 10 -30 121620 8121620 Time [sec Time [sec

EVA Mass Manipulation Simulation 0 2 46 8 1 0 -80 -60 -40 -20 0 2 0 4 0 0 2 4 6 8 10 -30 -20 -10 0 1 0 2 0 3 0 0 4 8 12 20 -80 -60 -40 -20 0 2 0 4 0 0 4 8 12 16 20 -30 -20 -10 0 1 0 2 0 3 0 Joint Angle Joint Torque Time [sec] Time [sec] Time [sec] Time [sec] 1 6

Satellite Capture Simulation pace Biomedical Engineerin Life Support 0.20 1.50 X-trans Y-trans Z-trans 1.00 0.15 RolX Pitch(z) 0.10 0.05 0E235 1.00 Time(s)

Satellite Capture Simulation -0.05 0.00 0.05 0.10 0.15 0.20 02 5 8 Time (s) Linear D isplacement ( m) -1.50 -1.00 -0.50 0.00 0.50 1.00 1.50 Angular Displacement ( deg) X-trans Y-trans Z-trans Roll(X) Yaw(Y) Pitch(Z) Y X Z 1 4 3 7 6 9

Technique/ Limitations pace Biomedical Engineerin Life Support Use the simplest possible model that adequately describes the dynamics of interest Use open kinematic chains Individual segments are rigid bodies

Technique / Limitations • Use the simplest possible model that adequately describes the dynamics of interest • Use open kinematic chains • Individual segments are rigid bodies

Notes pace Biomedical Engineerin Life Support Reference Text H. Asada and J.-J. E Slotine, " Robot Analysis and Control, John Wiley& Sons, 1986 Nomenclature Vectors or matrices are denoted by bold script(X, R) Scalar values are denoted by regular script(x, 0)

Notes Reference Text • H. Asada and J.-J. E. Slotine, “Robot Analysis and Control”, John Wiley & Sons, 1986 Nomenclature • Vectors or matrices are denoted by bold script ( • Scalar values are denoted by regular script ( x R x θ ), )

pace Biomedical Engineerin Life Support Part Musculoskeletal Kinematics

Part I Musculoskeletal Kinematics

Position and Orientation of Rigid Body & pace Biomedical Engineerin Life Support Position of rigid body is represented with reference to coord frame O-xyz by b Represent orientation of rigid body yb ith coord frame O'xhvhZb Components of unit vectors are direction cosines of each axis Combine the three unit vectors into a3x3matrⅸx.R.the“ Rotation matrix” (orthonormal matrix) R=n,t, b]

Position and Orientation of Rigid Body • Position of rigid body is represented with reference to coord frame O-xyz by ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎣ ⎡ = o o o o z y x x ]ˆ = ,ˆ[ ˆ,btnR • Represent orientation of rigid body with coord frame O’-xbybzb • Components of unit vectors are direction cosines of each axis • Combine the three unit vectors into a 3x3 matrix, R, the “Rotation Matrix” (orthonormal matrix) x y z nˆ tˆ bˆ b x b z b y O O′

Coordinate Transformations pace Biomedical Engineerin Life Support Coords of pt. P wrt fixed frame O-xyz Position of p wrt coord frame fixed to rigid body, O'-xhV1Zb X=X +un+ut+wb X=X,+Rx

Coordinate Transformations • Coords of pt. P wrt fixed frame O-xyz ⎥⎥⎥⎦⎤ ⎢⎢⎢⎣⎡ = zyx x • Position of P wrt coord frame fixed to rigid body, O’-x by bz b b oo b wvu wvu Rxxx btnxxx += +++= ⎥⎥⎥⎦⎤ ⎢⎢⎢⎣⎡ = ˆ ˆ ˆ x y z nˆ tˆ bˆ b x b z b y O O ′ P x o x b x

共26页,试读已结束,阅读完整版请下载
刷新页面下载完整文档
VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
相关文档