《多元统计分析》Chapter 5 Principal Components Analysis (PCA)

Chapter 5 Principal components analysis(PCA
zf Chapter 5 Principal Components Analysis (PCA)

Presentation outline 令◆ What is pca? 令◆ Geometrical approach to PCa 令◆ Analytical approach to PCA 令◆ Properties of pCa 令◆ How to determine the number of pc? 令◆ How to interpret the PC? ◆◆ Use of pc scores 2021/1/21
2021/1/21 2 cxt Presentation Outline ❖ w What is PCA? ❖ w Geometrical approach to PCA ❖ w Analytical approach to PCA ❖ w Properties of PCA ❖ w How to determine the number of PC? ❖ w How to interpret the PC? ❖ w Use of PC scores

5.1 reasons for using principal components analysis 口 Too many variables Pasta ic boa pressure LL Cholesteral Systolic BressE fication Diet L Cholesterol Exercse 2021/1/21 xt
2021/1/21 3 cxt 5.1 reasons for using principal components analysis Too Many Variables

a Stone use 1929-1938 data in usa and receive 17 variables which describe income-pay. He used principle component analysis and got three new variables fl. f2, F3. fl total income F2, total income increase ratio F3, economy increase or decrease. These new variable can use three variables(l △I、t) which can be measured directl 2021/1/21
2021/1/21 4 cxt Stone use 1929一1938 data in USA, and receive 17 variables which describe income-pay. He used principle component analysis and got three new variables F1、F2、F3. F1, total income;F2,total income increase ratio;F3,economy increase or decrease. These new variable can use three variables (I、 I、t )which can be measured directly

FI F2 F3 FI F2 0 F3 0.9950.0410.0571 △10.0560.9480.124-0.1021 369-0.282-0.836-0.414-0.1121 2021/1/21 cXt
2021/1/21 5 cxt F1 F2 F3 i i t F1 1 F2 0 1 F3 0 0 1 i 0.995 -0.041 0.057 l Δi -0.056 0.948 -0.124 -0.102 l t -0.369 -0.282 -0.836 -0.414 -0.112 1

Solutions Eliminate some redundant variables May lose important information that was uniquely reflected in the eliminated variables Create composite scores from variables(sum or average) Lost variability among the variables Multiple scale scores may still be collinear Create weighted linear combinations of variables while retaining most of the variability in the data Fewer variables little or no lost variation No collinear scales 2021/1/21
2021/1/21 6 cxt Solutions Eliminate some redundant variables. – May lose important information that was uniquely reflected in the eliminated variables. Create composite scores from variables (sum or average). – Lost variability among the variables – Multiple scale scores may still be collinear Create weighted linear combinations of variables while retaining most of the variability in the data. – Fewer variables; little or no lost variation – No collinear scales

日 An Easy choice To retain most of the information in the data while reducing the number of variables you must deal with, try principal components anal ysis. Most of the variability in the original data can be retained. but Components may not be directly interpretable 2021/1/21 cXt
2021/1/21 7 cxt An Easy Choice To retain most of the information in the data while reducing the number of variables you must deal with, try principal components analysis. Most of the variability in the original data can be retained. but… Components may not be directly interpretable

令 What is pca?(什么是主成分分析) PCa is a technique for forming new variables which are linear composites of the original variables The new variables are called principal components(PrinS The maximum number of prin's that can be formed is equal to the number of original variables. Usually the first few prin's represent most of the information in the original variables and can replace the original variables and hence achieve data reduction which is the main objective of pCa g The Prins are uncorrelated among themselves and can be used in regression 2021/1/21
2021/1/21 8 cxt ❖ What is PCA?(什么是主成分分析) ❖ PCA is a technique for forming new variables which are linear composites of the original variables. The new variables are called principal components(PRIN’s). ❖ The maximum number of PRIN’s that can be formed is equal to the number of original variables. Usually the first few PRIN’s represent most of the information in the original variables and can replace the original variables and hence achieve data reduction, which is the main objective of PCA ❖ The PRIN’s are uncorrelated among themselves and can be used in regression

a Principal Components AnalysiS(PCA) is a dimension reduction method that creates variables called principal components creates as many components as there are input variables. a Principal Components are weighted linear combinations of input variables aca othogonal to and independent of other components are generated so that the first component accounts for the most variation in the xs followed by the second component, and so on 2021/1/21 cXt
2021/1/21 9 cxt Principal Components Analysis(PCA) is a dimension reduction method that creates variables called principal components creates as many components as there are input variables. Principal Components are weighted linear combinations of input variables are orthogonal to and independent of other components are generated so that the first component accounts for the most variation in the xs, followed by the second component, and so on

平移、转坐标轴 F F 2021/1/21 10 cXt
2021/1/21 10 cxt 平移、旋转坐标轴 • 1 x F2 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • F1 2 x
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《多元统计分析》上市公司现金持有过量与不足影响下的投资行为效率分析.doc
- 《SAS程序》教学资源(实验课)实习一 方差分析.ppt
- 《SAS程序》教学资源(实验课)实习三 重复测量方差分析.ppt
- 《SAS程序》教学资源(实验课)实习二 重复测量方差分析.ppt
- 《SAS程序》教学资源(实验课)第十三章 测量手段的效度和信度.ppt
- 《SAS程序》教学资源(实验课)实习二 测量手段的信度和效度.ppt
- 《SAS程序》教学资源(实验课)实习四 横断面研究的设计和分析.ppt
- 《SAS程序》教学资源(实验课)lifetable.xls
- 《SAS程序》教学资源(实验课)样板作业.doc
- 《SAS程序》教学资源(实验课)实习五 追踪研究资料的分析.ppt
- 《SAS程序》教学资源(实验课)追踪研究样板作业.doc
- 《SAS程序》教学资源(实验课)追踪研究中相对危险度.doc
- 《SAS程序》教学资源(实验课)实习六 病例-对照研究的设计与分析.ppt
- 《SAS程序》教学资源(实验课)实习七 实验设计和调查设计.ppt
- 《SAS程序》教学资源(实验课)实习七 meta分析.ppt
- 《SAS程序》教学资源(实验课)多重回归与相关.ppt
- 《SAS程序》教学资源(实验课)电脑实验SAS源程序.doc
- 《SAS程序》教学资源(实验课)电脑实验SAS源程序.doc
- 《SAS程序》教学资源(实验课)实习一 SAS入门基本操作和语言基础.ppt
- 《SAS程序》教学资源(实验课)实习二 定量资料的统计描述.ppt
- 《多元统计分析》第五章 主成分分析.ppt
- 《多元统计分析》Chapter 7 Discriminant Analysis (判别分析).ppt
- 《多元统计分析》第四章 判别分析 (Discriminate Analysis).ppt
- 《多元统计分析》第六章 因子分析.ppt
- 《多元统计分析》第二章 均值向量和协方差阵的检验.ppt
- 《多元统计分析》多元正态分布统计推断、单因素方差分析.ppt
- 《多元统计分析》MULTIVARIATE STATISTICS ANALYSIS 多元统计分析.ppt
- 《多元统计分析》MULTIVARIATE STATISTICS ANALYSIS 多元统计分析.ppt
- 《多元统计分析》多元统计分析理论基础,矩阵和多元正态分布2.ppt
- 《多元统计分析》多元统计分析的理论基础2.ppt
- 《多元统计分析》对应分析、典型相关分析、定性数据的建模分析.ppt
- 《多元统计分析》第三章 数据的描述.doc
- 《多元统计分析》数据的收集.doc
- 《多元统计分析》方差分析.doc
- 《多元统计分析》第六章 试验设计与方差分析.doc
- 《多元统计分析》Chapter 9 Cluster analysis 聚类分析.ppt
- 《多元统计分析》第三章 聚类分析 (Cluster Analysis).ppt
- 《多元统计分析》多元统计分析.doc
- 《多元统计分析》多元统计分析重点2.doc
- 《多元统计分析》多元统计分析重点3.doc