《离散数学 Discrete Mathematics》课程教学资源(习题集)李弋老师-2012年期中试卷

Fudan universit 复旦大学 2011-2012学年第2学期考试试卷 果程名称:离散数学(I 课程代码:SOFT130040.01 开课院系:软件学院 考试形式:开卷 姓名 专业 23 6 8910总分 得分 DIRECTION: There are totally two pages of examination paper. You must write all your answers, include your name and student number clearly, on a specifie sheet. You have 2 hours to solve all the questions 1. Given lattice(L, s) described by the Hasse diagram shown in Figure 1, answer the fol- lowing questions:( 8 marks d Figure 1: A hasse diagram of a lattice (a) Prove or disprove whether the following subsets are sublattices of L: L1=10, a, b,1] L 2=a,c, d, 13, L3=0, c, e, I or not.(5 marks) (b)If Li, i= 1, 2, 3, is a sublattice, prove or disprove whether it is an ideal of L. 3 2. Let L be a finite lattice, prove that: (10 marks) (a)If L> 2, then for any element a E L, a is not a complement of a(4 marks) (b)If Ll> 3 and L is a chain, then L is not complemented lattice.(6 marks) 3. Prove or disprove the following statements. If a statement is false, give a counterexample
Fudan University ❊➀➷ 2011-2012➷❝✶2➷Ï⑧➪➪ò ➅➜➯→: ❧Ñê➷(II) ➅➜➇è: SOFT130040.01 ♠➅✓❳: ❫❻➷✓ ⑧➪✴➟: ♠ò ✻ ➯: ➷ Ò: ❀ ➆: ❑✽ 1 2 3 4 5 6 7 8 9 10 ♦➞ ✚➞ Direction: There are totally two pages of examination paper. You must write all your answers, include your name and student number clearly, on a specific answersheet. You have 2 hours to solve all the questions. 1. Given lattice hL, ≤i described by the Hasse diagram shown in Figure 1, answer the following questions: (8 marks) a b c d e 1 0 Figure 1: A Hasse Diagram of a Lattice (a) Prove or disprove whether the following subsets are sublattices of L: L1 = {0, a, b, 1}, L2 = {a, c, d, 1}, L3 = {0, c, e, 1} or not. (5 marks) (b) If Li , i = 1, 2, 3, is a sublattice, prove or disprove whether it is an ideal of L. (3 marks) 2. Let L be a finite lattice, prove that:(10 marks) (a) If |L| ≥ 2, then for any element a ∈ L, a is not a complement of a. (4 marks) (b) If |L| ≥ 3 and L is a chain, then L is not complemented lattice. (6 marks) 3. Prove or disprove the following statements. If a statement is false, give a counterexample. (15 marks) 1

(a)Let a be a well-defined proposition. a has arbitrary length when length k > 4.3 mark (b)B is satisfiable if and only if (B)is not valid. (3 marks) (c)(B)is not satisfiable if and only if B is valid. (3 marks) (d)The number of tautologies is the same as the number of unsatisfiable propositions (3 marks) (e) Given two sets of propositions∑1and∑2,∑1∑2→M(2)sM(∑1) 4. Let F be the constant false and M be the ternary minority connectives(M(A, B, C)is true if and only if at most one of A, B, C is true). Show that (F, M is complete.(4 marks 5. Prove that every proposition can be represented in CNF(Conjunctive Normal Form).(6 marks 6. Prove or disprove the following statements. If it is false, a counterexample is needed: (10 mari (a){(-(→)→-a),B}=(a→7).(4 marks) (b)IR+P,SVR, S)HnP. 3 marks) (c)(P→(Q→R)→(P→Q)→(P→B).(3 marks 7. Given the following deduction If the equatorial rain forests produce oxygen used by Americans, then eithe Americans ought to pay for the oxygen, or they ought to stop complaining about the destruction of the rain forests. But either it is false that americans ought to pay for the oxygen, or it is false that Americans ought to stop complaining about the destruction of the rain forests. Therefore, it is false that the equatorial rain forests produce oxygen used by Americans Answer the following questions:(9 marks) (a) Formalize the deduction with propositional logic. (5 marks) (b)Prove or disprove the conclusion formally.(4 marks 8. Given a set 2=a1,..., an of finite propositions, prove that 2F a if and only if (a1A…A∧an)→ a is valid.8 marks) 9. In 1977 it was proved that every planar map can be colored with four colors(Of course there are only finite countries on map) Suppose we have an infinite(but countable) planar map with countries C1, C2, C3 0 marks (a) Formalize this problem with propositional logic.(5 marks) (b)Prove that an infinite map can be still colored with four colors. (5 marks)
(a) Let α be a well-defined proposition. α has arbitrary length when length k ≥ 4. (3 marks) (b) B is satisfiable if and only if (¬B) is not valid. (3 marks) (c) (¬B) is not satisfiable if and only if B is valid. (3 marks) (d) The number of tautologies is the same as the number of unsatisfiable propositions. (3 marks) (e) Given two sets of propositions Σ1 and Σ2, Σ1 ⊆ Σ2 ⇒ M(Σ2) ⊆ M(Σ1). 4. Let F be the constant false and M be the ternary minority connectives(M(A, B, C) is true if and only if at most one of A, B, C is true). Show that {F, M} is complete. (4 marks) 5. Prove that every proposition can be represented in CNF(Conjunctive Normal Form).(6 marks) 6. Prove or disprove the following statements. If it is false, a counterexample is needed:(10 marks) (a) {(¬(β → γ) → ¬α), β} |= (α → γ).(4 marks) (b) {R → P, ¬S ∨ R, S} ` ¬P.(3 marks) (c) ((P → (Q → R)) → ((P → Q) → (P → R))). (3 marks) 7. Given the following deduction: If the equatorial rain forests produce oxygen used by Americans, then either Americans ought to pay for the oxygen, or they ought to stop complaining about the destruction of the rain forests. But either it is false that Americans ought to pay for the oxygen, or it is false that Americans ought to stop complaining about the destruction of the rain forests. Therefore, it is false that the equatorial rain forests produce oxygen used by Americans. Answer the following questions: (9 marks) (a) Formalize the deduction with propositional logic. (5 marks) (b) Prove or disprove the conclusion formally. (4 marks) 8. Given a set Σ = {α1, . . . , αn} of finite propositions, prove that Σ |= α if and only if (α1 ∧ · · · ∧ αn) → α is valid.(8 marks) 9. In 1977 it was proved that every planar map can be colored with four colors(Of course there are only finite countries on map). Suppose we have an infinite(but countable) planar map with countries C1, C2, C3, . . .. (10 marks) (a) Formalize this problem with propositional logic. (5 marks) (b) Prove that an infinite map can be still colored with four colors. (5 marks) 2
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《离散数学 Discrete Mathematics》课程教学资源(习题集)集合论与图论2007期中考试解答(部分).doc
- 《离散数学 Discrete Mathematics》课程教学资源(习题集)西安交通大学1999年研究生入学考试:离散数学试题.doc
- 《离散数学 Discrete Mathematics》课程教学资源(习题集)武汉大学1999年研究生入学考试.doc
- 《离散数学 Discrete Mathematics》课程教学资源(习题集)中科院计算机技术研究所1999年硕士研究生入学考试试题(答案).doc
- 《离散数学 Discrete Mathematics》课程教学资源(习题集)中科院计算机技术研究所1999年硕士研究生入学考试试题.doc
- 《离散数学 Discrete Mathematics》课程教学资源(习题集)程序设计竞赛图论题_第2次图论赛10982-10989.doc
- 《离散数学 Discrete Mathematics》课程教学资源(习题集)程序设计竞赛图论题_Graphic Problems.doc
- 《离散数学 Discrete Mathematics》课程教学资源(习题集)北京航空航天大学1999年研究生入学考试.doc
- 《离散数学 Discrete Mathematics》课程教学资源(习题集)北京大学1997年研究生入学考试.doc
- 《离散数学 Discrete Mathematics》课程教学资源(习题集)常用离散数学名词中英文对照.pdf
- 复旦大学:《高等数学》课程电子课件讲义_方向导数和梯度.pdf
- 复旦大学:《高等数学》课程电子课件讲义_二元函数的连续性与可微性.ppt
- 复旦大学:《高等数学》课程电子课件讲义_旋轮线.ppt
- 复旦大学:《高等数学》课程电子课件讲义_第十一章 概率 11.5 大数定律和中心极限定理.pdf
- 复旦大学:《高等数学》课程电子课件讲义_第十一章 概率 11.4 随机变量的数字特征.pdf
- 复旦大学:《高等数学》课程电子课件讲义_第十一章 概率 11.3 一维随机变量.pdf
- 复旦大学:《高等数学》课程电子课件讲义_第十一章 概率 11.2 条件概率与事件的独立性.pdf
- 复旦大学:《高等数学》课程电子课件讲义_第十一章 概率 11.1 概率.pdf
- 复旦大学:《高等数学》课程电子课件讲义_第十章 常微分方程 10.3 二阶常微分方程.pdf
- 复旦大学:《高等数学》课程电子课件讲义_第十章 常微分方程 10.2 一阶常微分方程.pdf
- 《离散数学 Discrete Mathematics》课程教学资源(习题集)李弋老师-2012年期末试卷.pdf
- 《离散数学 Discrete Mathematics》课程教学资源(习题集)《离散数学教程》期中试题及解答.pdf
- 《离散数学 Discrete Mathematics》课程教学资源(习题集)南京大学离散数学中考.pdf
- 《离散数学 Discrete Mathematics》课程教学资源(习题集)《集合论与图论》课堂练习1-(2006级).doc
- 《离散数学 Discrete Mathematics》课程教学资源(习题集)《集合论与图论》课堂练习1-(2006级)解答.doc
- 《离散数学 Discrete Mathematics》课程教学资源(习题集)《集合论与图论》课堂练习1-07(2010级).doc
- 《离散数学 Discrete Mathematics》课程教学资源(习题集)《集合论与图论》课堂练习1-07解答(2010级).doc
- 《离散数学 Discrete Mathematics》课程教学资源(习题集)《集合论与图论》课堂练习1-07解答(2011级).doc
- 《离散数学 Discrete Mathematics》课程教学资源(习题集)《集合论与图论》课堂练习1-07(2011级).doc
- 《离散数学 Discrete Mathematics》课程教学资源(习题集)《集合论与图论》课堂练习1-07(2012级).doc
- 《离散数学 Discrete Mathematics》课程教学资源(习题集)《集合论与图论》课堂练习1-07解答(2012级).doc
- 《离散数学 Discrete Mathematics》课程教学资源(习题集)《集合论与图论》课堂练习2-06解答(2005级).doc
- 《离散数学 Discrete Mathematics》课程教学资源(习题集)《集合论与图论》课堂练习2-07(2006级).doc
- 《离散数学 Discrete Mathematics》课程教学资源(习题集)《集合论与图论》课堂练习2-07解答(2006级).pdf
- 《离散数学 Discrete Mathematics》课程教学资源(习题集)《集合论与图论》课堂练习2-07(2011级).doc
- 《离散数学 Discrete Mathematics》课程教学资源(习题集)《集合论与图论》课堂练习2-07解答(2011级).doc
- 《离散数学 Discrete Mathematics》课程教学资源(习题集)《集合论与图论》课堂练习3-07(2006级).doc
- 《离散数学 Discrete Mathematics》课程教学资源(习题集)《集合论与图论》课堂练习3-07解答(2006级).doc
- 《离散数学 Discrete Mathematics》课程教学资源(习题集)《集合论与图论》课堂练习3.doc
- 《离散数学 Discrete Mathematics》课程教学资源(习题集)《集合论与图论》课堂练习3(2013年12月).doc