中国高校课件下载中心 》 教学资源 》 大学文库

复旦大学:《电动力学》课程电子讲义(PDF演示版)01-05 第一章 数学基础 1.5 曲线坐标系

文档信息
资源类别:文库
文档格式:PDF
文档页数:147
文件大小:387.04KB
团购合买:点击进入团购
内容简介
复旦大学:《电动力学》课程电子讲义(PDF演示版)01-05 第一章 数学基础 1.5 曲线坐标系
刷新页面文档预览

经典电动力学导论 Let there be light 第一章:数学基础§1.5 815曲线坐标系 正交曲线坐标系 复旦大学物理系 林志方徐建军1

Let there be light ²;>Ä寨 1ÙµêÆÄ: § 1.5 § 1.5 ­‚‹IX !­‚‹IX E￾ŒÆ ÔnX  Mï 1

经典电动力学导论 Let there be light 第一章:数学基础§1.5 815曲线坐标系 正交曲线坐标系 空间任意一点P的直角坐标:(x,y,2),有时也记为(x1,x2,x3) 复旦大学物理系 林志方徐建军1

Let there be light ²;>Ä寨 1ÙµêÆÄ: § 1.5 § 1.5 ­‚‹IX !­‚‹IX m?¿: P †‹Iµ(x, y, z)§kžP (x1, x2, x3) E￾ŒÆ ÔnX  Mï 1

经典电动力学导论 Let there be light 第一章:数学基础§1.5 815曲线坐标系 正交曲线坐标系 空间任意一点P的直角坐标:(x,y,2),有时也记为(x1,x2,x3) 如果存在一组独立、连续、单值函数: u1=f1(, 2), u2=f2 (a, 3, 2), u3=f3(x, 3, 2 并且其反函数 x=x1=91(1,u2,u3),y=x2=y2(u1,u2,13),z=x3=93(1,u2,3) 也独立、连续、单值, 复旦大学物理系 林志方徐建军1

Let there be light ²;>Ä寨 1ÙµêÆÄ: § 1.5 § 1.5 ­‚‹IX !­‚‹IX m?¿: P †‹Iµ(x, y, z)§kžP (x1, x2, x3) XJ3|Õá!ëY!üŠ¼êµ u1 = f1(x, y, z), u2 = f2(x, y, z), u3 = f3(x, y, z) ¿…Ù‡¼ê x = x1 = ϕ1(u1, u2, u3), y = x2 = ϕ2(u1, u2, u3), z = x3 = ϕ3(u1, u2, u3) Õá!ëY!üЧ E￾ŒÆ ÔnX  Mï 1

经典电动力学导论 Let there be light 第一章:数学基础§1.5 815曲线坐标系 正交曲线坐标系 空间任意一点P的直角坐标:(x,y,2),有时也记为(x1,x2,x3) 如果存在一组独立、连续、单值函数: u1=f1(, 2), u2=f2 (a, 3, 2), u3=f3(x, 3, 2 并且其反函数 x=x1=91(1,u2,u3),y=x2=y2(u1,2,13), x3=y3(u1,2,3) 也独立、连续、单值,那么P点坐标:(x,y,2)<→( 1,2, 复旦大学物理系 林志方徐建军1

Let there be light ²;>Ä寨 1ÙµêÆÄ: § 1.5 § 1.5 ­‚‹IX !­‚‹IX m?¿: P †‹Iµ(x, y, z)§kžP (x1, x2, x3) XJ3|Õá!ëY!üŠ¼êµ u1 = f1(x, y, z), u2 = f2(x, y, z), u3 = f3(x, y, z) ¿…Ù‡¼ê x = x1 = ϕ1(u1, u2, u3), y = x2 = ϕ2(u1, u2, u3), z = x3 = ϕ3(u1, u2, u3) Õá!ëY!üЧ@o P :‹Iµ(x, y, z) ⇐⇒ (u1, u2, u3) E￾ŒÆ ÔnX  Mï 1

经典电动力学导论 Let there be light 第一章:数学基础§1.5 815曲线坐标系 正交曲线坐标系 空间任意一点P的直角坐标:(x,y,2),有时也记为(x1,x2,x3) 如果存在一组独立、连续、单值函数: u1=f1(, 2), u2=f2 (a, 3, 2), u3=f3(x, 3, 2 并且其反函数 x=x1=91(1,u2,u3),y=x2=y2(u1,2,13), x3=y3(u1,2,3) 也独立、连续、单值,那么P点坐标:(x,y,2)<→( 1,U2,L (41,v2,43)称为空间点P的曲线坐标( curvilinear coordinates) 复旦大学物理系 林志方徐建军1

Let there be light ²;>Ä寨 1ÙµêÆÄ: § 1.5 § 1.5 ­‚‹IX !­‚‹IX m?¿: P †‹Iµ(x, y, z)§kžP (x1, x2, x3) XJ3|Õá!ëY!üŠ¼êµ u1 = f1(x, y, z), u2 = f2(x, y, z), u3 = f3(x, y, z) ¿…Ù‡¼ê x = x1 = ϕ1(u1, u2, u3), y = x2 = ϕ2(u1, u2, u3), z = x3 = ϕ3(u1, u2, u3) Õá!ëY!üЧ@o P :‹Iµ(x, y, z) ⇐⇒ (u1, u2, u3) (u1, u2, u3) ¡m: P ­‚‹I (curvilinear coordinates) E￾ŒÆ ÔnX  Mï 1

经典电动力学导论 Let there be light 第一章:数学基础§1.5 815曲线坐标系 正交曲线坐标系 空间任意一点P的直角坐标:(x,y,2),有时也记为(x1,x2,x3) 如果存在一组独立、连续、单值函数: u1=f1(, 2), u2=f2 (a, 3, 2), u3=f3(x, 3, 2 并且其反函数 x=x1=91(1,u2,u3),y=x2=y2(u1,2,13), x3=y3(u1,2,3) 也独立、连续、单值,那么P点坐标:(x,y,2)<→( 1,U2,L (41,v2,43)称为空间点P的曲线坐标( curvilinear coordinates) 用曲线坐标来描述空间点位置的坐标系称为一般曲线坐标系 复旦大学物理系 林志方徐建军1

Let there be light ²;>Ä寨 1ÙµêÆÄ: § 1.5 § 1.5 ­‚‹IX !­‚‹IX m?¿: P †‹Iµ(x, y, z)§kžP (x1, x2, x3) XJ3|Õá!ëY!üŠ¼êµ u1 = f1(x, y, z), u2 = f2(x, y, z), u3 = f3(x, y, z) ¿…Ù‡¼ê x = x1 = ϕ1(u1, u2, u3), y = x2 = ϕ2(u1, u2, u3), z = x3 = ϕ3(u1, u2, u3) Õá!ëY!üЧ@o P :‹Iµ(x, y, z) ⇐⇒ (u1, u2, u3) (u1, u2, u3) ¡m: P ­‚‹I (curvilinear coordinates) ^­‚‹I5£ãm: ‹IX¡„­‚‹IX E￾ŒÆ ÔnX  Mï 1

经典电动力学导论 Let there be light 第一章:数学基础§1.5 曲线坐标系中, 位置矢量:=ex+yey+ze2=r(x,y,2) 复旦大学物理系 林志方徐建军2

Let there be light ²;>Ä寨 1ÙµêÆÄ: § 1.5 ­‚‹IX¥§  ¥þµ r~ = x eˆx + y eˆy + z eˆz = r~(x, y, z) E￾ŒÆ ÔnX  Mï 2

经典电动力学导论 Let there be light 第一章:数学基础§1.5 曲线坐标系中, 位置矢量:=ex+yey+ze2=r(x,y,2)=r(1,2,3) 复旦大学物理系 林志方徐建军2

Let there be light ²;>Ä寨 1ÙµêÆÄ: § 1.5 ­‚‹IX¥§  ¥þµ r~ = x eˆx + y eˆy + z eˆz = r~(x, y, z) = r~(u1, u2, u3) E￾ŒÆ ÔnX  Mï 2

经典电动力学导论 Let there be light 第一章:数学基础§1.5 曲线坐标系中, 位置矢量:=ex+yey+ze2=r(x,y,2)=r(1,2,3) 微分线元:dl≡dr=eadx+eydy+e2dz 复旦大学物理系 林志方徐建军2

Let there be light ²;>Ä寨 1ÙµêÆÄ: § 1.5 ­‚‹IX¥§  ¥þµ r~ = x eˆx + y eˆy + z eˆz = r~(x, y, z) = r~(u1, u2, u3) ‡©‚µ d ~l ≡ d r~ = eˆx dx + eˆy dy + eˆz dz E￾ŒÆ ÔnX  Mï 2

经典电动力学导论 Let there be light 第一章:数学基础§1.5 曲线坐标系中, 位置矢量:=ex+yey+ze2=r(x,y,2)=r(1,2,3) 微分线元:d≡dr=eadx+eydy+e2dz=d1du1+d2du2+d3dua 复旦大学物理系 林志方徐建军2

Let there be light ²;>Ä寨 1ÙµêÆÄ: § 1.5 ­‚‹IX¥§  ¥þµ r~ = x eˆx + y eˆy + z eˆz = r~(x, y, z) = r~(u1, u2, u3) ‡©‚µ d ~l ≡ d r~ = eˆx dx + eˆy dy + eˆz dz = ~a1 du1 + ~a2 du2 + ~a3 du3 E￾ŒÆ ÔnX  Mï 2

刷新页面下载完整文档
VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
相关文档