重庆邮电大学理学院:《数值计算理论与技术》研究生课程PPT教学课件_第6章 非线性方程与方程组的数值解法

第6章非线性方程与方程组的数值解法 61二分法 62迭代法 6.3牛顿法 64弦割法 65非线性方程组的解法 66数值实验
6.1 二分法 6.2 迭代法 6.3 牛顿法 6.4 弦割法 第6章 非线性方程与方程组的数值解法 6.5 非线性方程组的解法 6.6 数值实验

61二分法 引例 在天体力学中,有如下开普勒(Kepe)方程/眯性 方程 x-t-asinx=0. 0<8<1 其中t一时间,x一弧度,行星运动的轨道x是t的函数 讨论单变量非线性方程f(x)=0(61) 的求根问题,这里x∈R,f(x)∈C[a,b
引例 在天体力学中,有如下开普勒(Kepler)方程 x −t − sin x = 0, 0 1 其中 t —时间, x —弧度,行星运动的轨道 x 是 t 的函数. 讨论单变量非线性方程 f (x) = 0 (6.1) 的求根问题,这里 xR , f (x)C[a,b]. 6.1 二分法 非线性 方程

61二分法 、基本概念 非线性方程f(x)=0(6.1) 其中,∫(x)∈C[a,b,且设∫(a)f(b)<0 则在区间(a,b)内至少存在一点与,使∫(5)=0 称为函数f(x)的零点或方程的根,并称[a,b为方程的含根区间
6.1 二分法 则在区间(a,b)内至少存在一点 ,使 f ( ) = 0 . 称 为函数 f (x) 的零点或方程的根,并称[a,b]为方程的含根区间. 非线性方程 f (x) = 0 (6.1) 其中, f (x) C[a,b],且设 f (a) f (b) 0 . 一、基本概念

单选题5分 8设置 方程x-5x-3=0有几个实根? A B D)0 提交
1 2 3 0 A B C D 提交 单选题 5分

如果∫(x)可分解为f(x)=(x-x)"g(x),其中g(x)≠0, m为正整数,则称x为f(x)的m重零点 或方程f(x)=0的m重根 对于充分可微的函数f(x), x是f(x)的m重零点的充分必要条件是 f(x)=f(x)=f"(x)=…=f(m)(x)=0,∫(m)(x)≠0
如果 f (x) 可分解为 f (x) (x x ) g(x) m = − ,其中 ( ) 0 g x , m 为正整数,则称 x 为 f (x) 的 m 重零点 或方程 f (x) = 0 的 m 重根. 对于充分可微的函数 f (x) , x 是 f (x) 的 m 重零点的充分必要条件是 ( ) ( ) ( ) ( ) 0, ( ) 0 ( 1) ( ) = = = = = − f x f x f x f x f x m m

f(x)=0(6.1) 分法 不妨设方程(6.1)在[a,b内仅有一个实根 设E为预先给定的精度要求。 atb ①令x 2’计算f(x0); ②如果f(x)=0,则x0是f(x)=0的根,停止计算,输出结果5=x0; 如果f(a)f(x0)<0,令a1=a,b1=x,否则令a1=x,b1=b ③如果b-ak≤E,则输出结果%k+b2 ,停机; 2 否则,返回①,并重复①,②,③步
设 为预先给定的精度要求。 ① 令 2 0 a b x + = ,计算 ( ) 0 f x ; ② 如果 f (x0 ) = 0 ,则 0 x 是 f (x) = 0的根,停止计算,输出结果 0 = x ; 如果 f (a) f (x0 ) 0,令 1 1 0 a = a,b = x ,否则令a1 = x0 ,b1 = b ; ③ 如果 − bk ak ,则输出结果 2 ak + bk ,停机; 否则,返回①,并重复①,②,③步。 二、二分法 f (x) = 0 (6.1) 不妨设方程(6.1)在[a,b]内仅有一个实根

以上方法可得到每次缩小一半的含根区间序列: a12b1][a2b2]…[ak,b]→… 且满足(1)f(ak)f(bk)<0,即5∈[ak,bk (b-a) 2 当区间长度很小时,取其中点xk=(ak+b)/2为根的近似值 显然有 总之,由上述二分法得到一个序列{xk},由式(62)有mxk=5
以上方法可得到每次缩小一半的含根区间序列: [ , ] [ , ] a1 b1 a2 b2 ... [ak ,bk ] 且满足(1) f (ak ) f (bk ) 0 , 即 [ , ] ak bk ; (2) ( ) 2 1 1 b a b a k k k − = − − . 当区间长度很小时,取其中点 xk = (ak + bk )/ 2 为根的近似值. 显然有 ( ) 2 1 2 b a b a x k k k k = − − − (6.2) 总之,由上述二分法得到一个序列{ }k x ,由式(6.2)有 = → k k lim x

注:①分半次数k可取为大于 In(b-a)-hn a 的最小整数 In 2 ②二分法的优点:方法简单,且对只要求函数∫(x)连续即可 例1用二分法求f(x)=x0-x-1=0在[1,2]内的一个实根 且要求精确到小数后第3位. 解由E=05×103和公式(63)如b-a)-hE In 2 可确定所需分半次数k=11 计算结果如表61
注:①分半次数k 可取为大于 ln 2 ln( b − a) − ln 的最小整数. ②二分法的优点:方法简单,且对只要求函数 f (x) 连续即可. 例 1 用二分法求 ( ) 1 0 6 f x = x − x − = 在[1,2]内的一个实根, 且要求精确到小数后第 3 位. 解 由 3 0.5 10− = 和公式(6.3) ln 2 ln( − ) − ln b a k 可确定所需分半次数k =11. 计算结果如表 6.1

表61计算结果 k k f(xu) 1.0 2.0 1.5 8.890625 1.25 564697 123456789 1.0 1.25 1.125 0.097713 1.125 1.25 1.1875 0.616653 1.125 1.1875 1.15625 0.233269 1.125 1.15625 1.140625 0.0615778 1.125 1.140625 1.132813 0.0195756 1.132813 1.140625 1.136719 0.0206190 1.132813 1.136719 1.134766 4307×10- 101.132813 1.134766 1.133789 0.00959799 1.133789 1.134766 1.134277 -0.0045915
k k a k b k x ( ) k f x 1 1.0 2.0 1.5 8.890625 2 1.0 1.5 1.25 1.564697 3 1.0 1.25 1.125 -0.097713 4 1.125 1.25 1.1875 0.616653 5 1.125 1.1875 1.15625 0.233269 6 1.125 1.15625 1.140625 0.0615778 7 1.125 1.140625 1.132813 −0.0 195756 8 1.132813 1.140625 1.136719 0.0206190 9 1.132813 1.136719 1.134766 4.307 4 10− 10 1.132813 1.134766 1.133789 −0.00959799 11 1.133789 1.134766 1.134277 −0.0045915 表 6.1 计算结果

二分法 优缺点? ①优点:方法简单,且只要求函数∫(x)连续 ②缺点:不能求复根及偶数重根 举例说明 个方程有偶数重根,但不能用二分法求出该重实根 例:方程∫(x)=(x-1)(x-2)=0在[0,3]内有重根x=1, 但不能由二分法求出
①优点:方法简单,且只要求函数 f (x) 连续. 二分法 优缺点? ②缺点:不能求复根及偶数重根. 举例说明: 一个方程有偶数重根,但不能用二分法求出该重实根. 例:方程 2 f x x x ( ) ( 1) ( 2) 0 = − − = 在[0,3]内有重根 x =1, 但不能由二分法求出
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 重庆邮电大学理学院:《数值计算理论与技术》研究生课程PPT教学课件_第5章 数值积分与数值微分.pptx
- 重庆邮电大学理学院:《数值计算理论与技术》研究生课程PPT教学课件_第4章 线性方程组的数值方法.pptx
- 重庆邮电大学理学院:《数值计算理论与技术》研究生课程PPT教学课件_第3章 曲线拟合与函数逼近.pptx
- 重庆邮电大学理学院:《数值计算理论与技术》研究生课程PPT教学课件_第2章 插值法.pptx
- 重庆邮电大学理学院:《数值计算理论与技术》研究生课程PPT教学课件_第1章 绪论(郑继明).pptx
- 重庆邮电大学理学院:《图论及其应用》课程PPT教学课件_第6章 平面图与着色.ppt
- 重庆邮电大学理学院:《图论及其应用》课程PPT教学课件_第5章 独立集与匹配(独立集、支配集、覆盖集、匹配).ppt
- 重庆邮电大学理学院:《图论及其应用》课程PPT教学课件_第4章 网络优化与Petri网.ppt
- 重庆邮电大学理学院:《图论及其应用》课程PPT教学课件_第3章 树与最短路.ppt
- 重庆邮电大学理学院:《图论及其应用》课程PPT教学课件_第2章 图的基本概念.ppt
- 重庆邮电大学理学院:《图论及其应用》课程PPT教学课件_第1章 预备知识——集合、关系、函数、复杂度.ppt
- 重庆大学数学与统计学院:《数值分析 Numerical Analysis》课程教学讲义_17_数模论文——信息采集设备的布置问题.pdf
- 重庆大学数学与统计学院:《数值分析 Numerical Analysis》课程教学讲义_16_车速估计模型.pdf
- 重庆大学数学与统计学院:《数值分析 Numerical Analysis》课程教学讲义_15_《数值分析》试题2.pdf
- 重庆大学数学与统计学院:《数值分析 Numerical Analysis》课程教学讲义_14_《数值分析》试题1.pdf
- 重庆大学数学与统计学院:《数值分析 Numerical Analysis》课程教学讲义_13_ch09 常微分方程的数值解法.pdf
- 重庆大学数学与统计学院:《数值分析 Numerical Analysis》课程教学讲义_12_ch08 数值积分与数值微分.pdf
- 重庆大学数学与统计学院:《数值分析 Numerical Analysis》课程教学讲义_11_ch07 函数逼近与曲线拟合.pdf
- 重庆大学数学与统计学院:《数值分析 Numerical Analysis》课程教学讲义_10_ch06 插值法.pdf
- 重庆大学数学与统计学院:《数值分析 Numerical Analysis》课程教学讲义_09_ch05 非线性方程的求根.pdf
- 重庆邮电大学理学院:《数值计算理论与技术》研究生课程PPT教学课件_第7章 常微分方程初值问题的数值解法.pptx
- 重庆邮电大学理学院:《数值计算理论与技术》研究生课程PPT教学课件_第8章 矩阵特征值问题的数值方法.pptx
- 重庆交通大学:《地理数学方法》研究生课程教学资源(PPT课件)第一章 概述 Mathematical Methods for Geography(主讲:林孝松).ppt
- 重庆交通大学:《地理数学方法》研究生课程教学资源(教材讲义)第一章 综合评价指标权重计算方法.pdf
- 重庆交通大学:《地理数学方法》研究生课程教学资源(教材讲义)第三章 分形理论方法及其应用.pdf
- 重庆交通大学:《地理数学方法》研究生课程教学资源(教材讲义)第四章 集对分析方法及应用.pdf
- 重庆交通大学:《地理数学方法》研究生课程教学资源(教材讲义)第五章 物元模型方法及应用.pdf
- 重庆交通大学:《地理数学方法》研究生课程教学资源(教材讲义)第六章 时间序列分析及应用.pdf
- 重庆交通大学:《地理数学方法》研究生课程教学资源(教材讲义)第七章 灰色系统理论及其应用.pdf
- 重庆交通大学:《地理数学方法》研究生课程教学资源(教材讲义)第八章 模糊数学方法及其应用.pdf
- 深圳大学:《高等数学(经济管理类)》课程试题_2005(下)A卷(试卷).doc
- 深圳大学:《高等数学(经济管理类)》课程试题_2005(下)A卷(答案).doc
- 深圳大学:《高等数学(经济管理类)》课程试题_2005(下)B卷(试卷).doc
- 深圳大学:《高等数学(经济管理类)》课程试题_2005(下)B卷(答案).doc
- 深圳大学:《高等数学(经济管理类)》课程试题_2006(上)A卷(试卷).doc
- 深圳大学:《高等数学(经济管理类)》课程试题_2006(上)A卷(答案).doc
- 深圳大学:《高等数学(经济管理类)》课程试题_2006(上)B卷(试卷).doc
- 深圳大学:《高等数学(经济管理类)》课程试题_2006(上)B卷(答案).doc
- 深圳大学:《高等数学(理工类)》课程教学资源_教学基本要求(赵冰).doc
- 深圳大学:《高等数学(理工类)》课程教学资源_A5课程教学大纲(基础班).doc