同济大学:FWA for Noisy Optimization Problems(张军旗)

FWA for Noisy optimization Problems JunQi zhang(张军旗) Department of Computer Science and Technology, Tongji University, Shanghai, China zhangiungi@tongi.edu.cn
FWA for Noisy Optimization Problems JunQi Zhang (张军旗) Department of Computer Science and Technology, Tongji University, Shanghai, China zhangjunqi@tongji.edu.cn

Content Noisy Optimization problem a Resampling methods Fireworks algorithms From resampling to Non-resampling in FWa Novel Directions for noisy optimization
Content ◼ Noisy Optimization Problem ◼ Resampling Methods ◼ Fireworks Algorithms ◼ From Resampling to Non-resampling in FWA ◼ Novel Directions for Noisy Optimization

Classes of uncertainties Robust Design scenario (A)Environmental uncertainty: Changing environmental and uncertain operating conditions Uncertainties (via the a-variable) C f=f(x, a) (B)Input uncertainty Design parameter tolerances System 1">Min: and actuator imprecision to a certain degree of (gray or black box) accuracy Fa-> Max f=f(X+b, a F3 (C)Output uncertainty Uncertainties concerning the observed system performance Design parameters f=f[f(x+b, a)] Optimization Strategy L quality signals
Classes of Uncertainties (A)Environmental uncertainty:Changing environmental and uncertain operating conditions (via the a-variable) f=f(x,a) (B)Input uncertainty:Design parameter tolerances and actuator imprecision to a certain degree of accuracy f=f(x+b,a) (C) Output uncertainty:Uncertainties concerning the observed system performance f’=f’[f(x+b,a)] 1. Beyer, H. G., Sendhoff, B., "Robust optimization–a comprehensive survey", Computer Methods in Applied Mechanics and Engineering, vol.196,no.33-34, pp. 3190–3218, 2007

噪声优化问题的优化目标 mieF(o)=G(,,…M(x,) with x=(x1+81,,+8 =(C1+v,,ck+k) 1: M, c )=f: Mx, c)+e1: M subject to x∈ 2019-TEVC-Robust Multiobjective Optimization via Evolutionary algorithms
噪声优化问题的优化目标 2019-TEVC-Robust Multiobjective Optimization via Evolutionary Algorithms

Input Uncertainty and Multi-fidelity Input Uncertainty 2018-TAC-Simulation Budget Allocation for Selecting the Top-m Designs with Input Uncertainty 2019-TEVC New Sampling Strategies When Searching for Robust Solutions a Multi-fidelity 2018-TEVC-A Generic Test Suite for Evolutionary Multifidelity Optimization 2019-TAC-Efficient Simulation Budget Allocation for Subset Selection Using Regression metamodels
Input Uncertainty and Multi-fidelity ◼ Input Uncertainty ◼ 2018-TAC-Simulation Budget Allocation for Selecting the Top-m Designs with Input Uncertainty ◼ 2019-TEVC-New Sampling Strategies When Searching for Robust Solutions ◼ Multi-fidelity ◼ 2018-TEVC-A Generic Test Suite for Evolutionary Multifidelity Optimization ◼ 2019-TAC-Efficient Simulation Budget Allocation for Subset Selection Using Regression Metamodels

Noisy Optimization Problem u Without noise With noises, Additive min f(x),x=[x1, x2, ,x d x∈X (x)=f(x)+N(0,72) d is the number of dimensions 12. Multiplicative: x is the feasible region of x (x)=(x)XN(12)
Noisy Optimization Problem ◼ Without noise: min 𝑥∈𝑋 𝑓(𝑥) , 𝑥 = [𝑥 1 , 𝑥 2 , … , 𝑥 𝑑 ] 𝑑 is the number of dimensions. 𝑋 is the feasible region of 𝑥. ◼ With noises: 1. Additive: 𝑓 መ + 𝑥 = 𝑓 𝑥 + 𝑁 0,𝜎 2 2. Multiplicative: 𝑓 መ × 𝑥 = 𝑓 𝑥 × 𝑁(1,𝜎 2 )

Benchmark functions 1. Wang, Handing, Yaochu Jin, and John Doherty, A Generic Test Suite for Evolutionary Multifidelity Optimization", IEEE Transactions on Evolutionary Computation, voL 22, 10.6 pp. 836-850, 2018 2. G.H.Wu,RMallipeddi, P. N. Suganthan, " Problem Definitions and Evaluation Criteria for the CEC 2017 Competition and Special Session on Constrained Single Objective Real-parameter Optimization", Techmical RD0n,2016 3. J.J. Liang, B. Y. Qu, P.N. Suganthan, et al, "Problem Definitions and Evaluation Criteria for the CEc 2015 Competition on Learning-based Rea-Parameter Single Objective Optimization", Technical report, 2014 4. J.J. Liang, B. Y. Qu, P.N. Suganthan, Alfredo G. H, "Problem definitions and evaluation criteria for the cec 2013 special session on real-parameter", EEE Congress on Evolutionary Computation(CEC1, 2013 5. K Tang,XLi, P.N. Suganthan, Z. Yang and W. Thomas, "Benchmark functions for the cec'2010 special session ind competition on large-scale global optimization", Technical Report, 2010 6. R Mallipeddi, P N Suganthan, "Problem definitions and evaluation criteria for the cec 2010 competition on constrained real parameter optimization",EEE Congress on Evolutionary Computation(CEC, 2010 7. K Tang, X. Yao, P.N. Suganthan, C MacNish, Y P Chen, C. M. Chen, Z Yang, "Benchmark functions for the CEC2008 special session and competition on large scale global optimization", IEEE Congress on Evolutionary Computation(CEC, 2008 8. P.N. Suganthan, N. Hansen, J.J. Liang, K Deb, Y.-P. Chen, A. Auger, S. Tiwari, "Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization", IEEE Congress_ onl Evolutionary Computation(CEC1, 2005
Benchmark Functions 1. Wang, Handing, Yaochu Jin, and John Doherty,"A Generic Test Suite for Evolutionary Multifidelity Optimization",IEEE Transactions on EvolutionaryComputation,vol.22,no.6,pp. 836-850,2018. 2. G.H.Wu, R.Mallipeddi, P. N. Suganthan,"Problem Definitions and Evaluation Criteria for the CEC 2017 Competition and Special Session on Constrained Single Objective Real-Parameter Optimization", Technical Report, 2016. 3. J. J. Liang, B. Y. Qu, P. N. Suganthan, et al.,"Problem Definitions and Evaluation Criteria for the CEC 2015 Competition on Learning-basedReal-Parameter Single Objective Optimization",TechnicalReport, 2014. 4. J. J. Liang, B. Y. Qu,P. N. Suganthan, Alfredo G. H., "Problem definitions and evaluation criteria for the CEC 2013 specialsessionon real-parameter optimization",IEEE Congress on EvolutionaryComputation(CEC), 2013. 5. K. Tang, X. Li, P. N. Suganthan, Z. Yang and W. Thomas, "Benchmark functions for the cec' 2010 special session and competitionon large-scale global optimization", Technical Report, 2010. 6. R. Mallipeddi, P. N. Suganthan, " Problem definitions and evaluation criteria for the CEC 2010 competition on constrainedreal parameter optimization ",IEEE Congress on EvolutionaryComputation (CEC), 2010. 7. K. Tang, X. Yao, P. N. Suganthan, C. MacNish, Y. P. Chen, C. M. Chen, Z. Yang, "Benchmark functions for the CEC’2008 special session and competition on large scale global optimization", IEEE Congress on Evolutionary Computation(CEC), 2008. 8. P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y. –P. Chen, A. Auger, S. Tiwari, "Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization", IEEE Congress on EvolutionaryComputation (CEC), 2005

Benchmark Functions on Large-Scale Optimization in CEC 2010 Original 他 Additive Multiplicative noisy
8 Benchmark Functions on Large-Scale Optimization in CEC 2010 Original Additive Noisy Multiplicative Noisy

Effects of noisy fitness Evaluation Undesirable selection Behavior a superior candidate may be erroneously believed to be inferior, causing it to be eliminated An inferior candidate may be erroneously believed to be superior, causing it to survive and reproduce. Undesirable effects The system does not retain what it has learnt. Exploitation is limited Fitness does not monotonically improve with generation The learning rate is reduced 1. DiPietro A, While l, Barone l, Applying evolutionary algorithms to problems with noisy, time-consuming fitness functions"EEE Congress on Evolutionar Computation(CEC, pp. 1254-1261, 2004
Effects of Noisy Fitness Evaluation ◼ Undesirable Selection Behavior ◼ A superior candidate may be erroneously believed to be inferior, causing it to be eliminated. ◼ An inferior candidate may be erroneously believed to be superior, causing it to survive and reproduce. ◼ Undesirable effects ◼ The system does not retain what it has learnt. ◼ Exploitation is limited. ◼ Fitness does not monotonically improve with generation. ◼ The learning rate is reduced. 1.Di Pietro A, While L, Barone L, "Applying evolutionary algorithms to problems with noisy, time-consuming fitness functions",IEEE Congress on Evolutionary Computation (CEC), pp. 1254–1261,2004

Learning and Optimization are Both Needed in Noisy Environments Resampling . Fitness value Finite budget Learning Learn Exploitation Swarm Optimize Intelligence e Exploration sy Environment
Learning and Optimization are Both Needed in Noisy Environments 10 • Fitness value • Finite budget Resampling Learning • Exploitation • Exploration Swarm Intelligence Noisy Environment Optimize Learn
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 南京大学:《编译原理》课程教学资源(PPT课件讲稿)第三章 词法分析.ppt
- 电子科技大学:《计算机操作系统》课程教学资源(PPT课件)第一章 操作系统引论.ppt
- 电子工业出版社:《计算机网络》课程教学资源(第五版,PPT课件讲稿)第五章 运输层.ppt
- 四川大学:《操作系统 Operating System》课程教学资源(PPT课件讲稿)Chapter 5 互斥与同步(Mutual Exclusion and Synchronization)5.1 Principles of Concurrency 5.2 Mutual Exclusion.ppt
- 中国科学技术大学:《计算机网络 Computer Networks(计算机通信网)》课程教学资源(PPT课件讲稿)Chapter 06 Internet Protocol.ppt
- 构建互联互通的单位局域网(PPT讲稿).ppt
- 安徽理工大学:《汇编语言》课程教学资源(PPT课件讲稿)第八章 输入输出程序设计.ppt
- 中国科学技术大学:《信号与图像处理基础 Signal and Image Processing》课程教学资源(PPT课件讲稿)空域滤波 Spatial Filtering.pptx
- 广西医科大学:《计算机网络 Computer Networking》课程教学资源(PPT课件讲稿)Chapter 03 Network Management and Operation(Network Architetures and Standarts).pptx
- 《电子商务实用教程》课程教学资源(PPT课件讲稿)第三章 网络营销.ppt
- 河南中医药大学:《网络技术实训》课程教学资源(PPT课件讲稿)第7讲 网络安全实训(主讲:许成刚).pptx
- 《计算机应用基础》工学结合配套课件(PPT讲稿)模块二系统软件操作技术(Windows XP的实用工具).ppt
- 《C++程序设计》教学资源(PPT课件讲稿)构造函数和析构函数.ppt
- 《程序设计语言》课程教学资源(PPT课件讲稿)第5章 函数式程序设计语言.ppt
- 南京大学:移动Agent系统支撑(PPT讲稿)Agent Mobility Software Agent.pptx
- 计算机硬件维护(PPT课件讲稿).ppt
- 《MATLAB程序设计》课程教学资源(教学大纲)Matlab programming.doc
- 普林斯顿大学:平衡查找树(PPT讲稿)New Balanced Search Trees.pptx
- 清华大学:Top-k String Similarity Search with Edit-Distance Constraints.pptx
- 上海交通大学:网络安全 Network Security(PPT讲稿,朱浩瑾).pptx
- 西安培华学院:《计算机应用基础》课程教学资源(PPT课件讲稿)第1章 信息技术与计算机基础知识.ppt
- 香港科技大学:Recent Development of Heterogeneous Information Networks - From Meta-paths to Meta-graphs.pptx
- 《C语言程序设计》课程电子教案(PPT课件讲稿)第9章 文件操作.ppt
- 理论计算机科学(PPT专题讲稿)Topics in Theoretical Computer Science(Linear Programming).pptx
- 北京建筑大学:《计算机图形学》课程教学资源(PPT课件讲稿)第一章 绪论(吕书强).ppt
- 清华大学:《计算机导论》课程电子教案(PPT教学课件)第5章 程序设计知识.ppt
- 中国科学技术大学:《计算机文化基础》课程教学资源(PPT课件讲稿,共四章,李金龙).ppt
- 《自然语言处理》课程教学资源(PPT课件讲稿)语言模型.ppt
- 《计算机网络》课程教学资源(PPT课件讲稿)第7章 运输层.ppt
- 河南中医药大学(河南中医学院):《计算机文化》课程教学资源(PPT课件讲稿)第八章 数字多媒体.ppt
- 丽水职业技术学院:《电子商务实训》课程教学资源(PPT课件讲稿)电子商务交易模式之“B2C”.ppt
- 中国科学技术大学:《数据结构》课程教学资源(PPT课件)第八章 查找表.pps
- 《数据结构》课程教学资源(PPT课件讲稿)第九章 排序 Sort.ppt
- 《微机原理》课程教学资源(PPT课件讲稿)第三章 寻址方式与指令系统.ppt
- 《数据结构和编程设计》课程教学资源(PPT课件讲稿)Chapter 1 Programming Principles.ppt
- 西安电子科技大学:人工神经网络(PPT讲稿)Artificial Neural Networks(Introduction).ppt
- A New Approach for Accurate Modelling of Medium Access Control(MAC)Protocols.ppt
- 贵州师范学院:《高级语言程序设计 Advanced Programming》课程教学资源(PPT课件讲稿)第9章 结构体.ppt
- 《大型机高级系统管理技术》课程教学资源(PPT课件讲稿)第3章 作业控制语言.ppt
- 厦门大学:《大数据技术原理与应用》课程教学资源(PPT课件讲稿)第九章 图计算.ppt