香港科技大学:Latent Tree Models

AAAl 2014 Tutorial Latent tree models Part II: Definition and Properties Nevin L Zhang Dept. of computer Science Engineering The hong Kong Univ of Sci. Tech http://www.cse.ust.hk/lzhang
Latent Tree Models Part II: Definition and Properties Nevin L. Zhang Dept. of Computer Science & Engineering The Hong Kong Univ. of Sci. & Tech. http://www.cse.ust.hk/~lzhang AAAI 2014 Tutorial

Part l: Concept and Properties Latent tree Models Definition Relationship with finite mixture models Relationship with phylogenetictrees Basic Properties AAAl2014 Tutorial Nevin L Zhang HKUST
AAAI 2014 Tutorial Nevin L. Zhang HKUST 2 Part II: Concept and Properties Latent Tree Models Definition Relationship with finite mixture models Relationship with phylogenetic trees Basic Properties

Basic Latent Tree ModelS LTM) Bayesian network All variables are discrete Y1 Structure is a rooted tree Y2 Y3 Leaf nodes are observed(manifest X4 variables Internal nodes are not observed X1)(X2)(X3 X5)(X6)(X7 (latent variables) aso known as hierarchical Parameters latent class(HLc)models, HLC models(Zhang JMLR 2004) P(Y1),P(Y2Y1),P(X1Y2),P(2Y2), Semantics P(X1,…,Xn,Y1,…,Ym) I P(Z I parent(Z) parent z∈{x1+XnY1……,Ym}
AAAI 2014 Tutorial Nevin L. Zhang HKUST 3 Basic Latent Tree Models (LTM) Bayesian network All variables are discrete Structure is a rooted tree Leaf nodes are observed (manifest variables) Internal nodes are not observed (latent variables) Parameters: P(Y1), P(Y2|Y1),P(X1|Y2), P(X2|Y2), … Semantics: Also known as Hierarchical latent class (HLC) models, HLC models (Zhang. JMLR 2004)

Joint distribution over observed variables Marginalizing out the latent variables in P(X1, ...,Xn, Y1,..., Ym),we get a joint distribution over the observed variables P(X1, ..., Xn) In comparison with bayesian network without latent variables, LTM Is computationally very simple to work with Represent complex relationships among manifest variables What does the structure look like without the latent variables? Y1 X4 X1)(X2)(X3 X5(X6)X7 AAAl2014 Tutorial Nevin L Zhang HKUST
AAAI 2014 Tutorial Nevin L. Zhang HKUST 4 Marginalizing out the latent variables in , we get a joint distribution over the observed variables . In comparison with Bayesian network without latent variables, LTM: Is computationally very simple to work with. Represent complex relationships among manifest variables. What does the structure look like without the latent variables? Joint Distribution over Observed Variables

Pouch Latent Tree Models(PLTM) An extension of basic ltm (Poon et al. ICML 2010) Rooted tree Internal nodes represent discrete latent variables Each leaf node consists of one or more continuous observed variable called a pouch P(x1,x2y2)=N(x1,x2|2,∑y2) (-25,-25):y=51 (0,0 y2 (25,25) Y23) (Y3(3) Y4(3 10.5 y2 0.51 ∈{5}(2)(0)()(如)( AAAl2014 Tutorial Nevin L Zhang HKUST 5
AAAI 2014 Tutorial Nevin L. Zhang HKUST 5 Pouch Latent Tree Models (PLTM) An extension of basic LTM Rooted tree Internal nodes represent discrete latent variables Each leaf node consists of one or more continuous observed variable, called a pouch. (Poon et al. ICML 2010)

More general latent variable tree models Some internal nodes can be observed Internal nodes can be continuous Choi et al. JMLR 20I D) Forest @E回 2。 @e@@ @ BsisO G @@ Primary focus of this tutorial the basic ltm AAAl2014 Tutorial Nevin L Zhang HKUST
AAAI 2014 Tutorial Nevin L. Zhang HKUST 6 More General Latent Variable Tree Models Some internal nodes can be observed Internal nodes can be continuous Forest Primary focus of this tutorial: the basic LTM (Choi et al. JMLR 2011)

Part l: Concept and Properties Latent tree Models Definition Relationship with finite mixture models Relationship with phylogenetictrees Basic Properties AAAl2014 Tutorial Nevin L Zhang HKUST
AAAI 2014 Tutorial Nevin L. Zhang HKUST 7 Part II: Concept and Properties Latent Tree Models Definition Relationship with finite mixture models Relationship with phylogenetic trees Basic Properties

Finite Mixture Models( FMM) Gaussian Mixture Models(GMM) Continuous attributes p(x)=∑P(z=k)xz=k)=∑xp(x2=k) p(x2z=k)=N(xuk,∑k) Graphical model z X1,xX2,Xx3,X4,x5,X6,X7,X8×9 AAAl2014 Tutorial Nevin L Zhang HKUST
AAAI 2014 Tutorial Nevin L. Zhang HKUST 8 Finite Mixture Models (FMM) Gaussian Mixture Models (GMM): Continuous attributes Graphical model

Finite Mixture Models FMM) GMM with independence assumption Block diagonal co-variable matrix X1 2 X3 X1 X2 0 Y2(3) Graphical Model XI X3 X2 AAAl2014 Tutorial Nevin L Zhang HKUST
AAAI 2014 Tutorial Nevin L. Zhang HKUST 9 Finite Mixture Models (FMM) GMM with independence assumption Block diagonal co-variable matrix Graphical Model

Finite mixture models Latent class models (lcm): Discrete attributes Graphical Model P(x)=P(AA2…An)=∑P(2=k)ⅡP(4z=k) Distribution for cluster k: IIP(A)z Product multinomial distribution =1 All FMMs One latent variable Yielding one partition of data AAAl2014 Tutorial Nevin L Zhang HKUST 10
AAAI 2014 Tutorial Nevin L. Zhang HKUST 10 Finite Mixture Models Latent class models (LCM): Discrete attributes Distribution for cluster k: Product multinomial distribution: All FMMs One latent variable Yielding one partition of data Graphical Model
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- Network and System Security Risk Assessment(PPT讲稿)Introduction.ppt
- 复旦大学:Trapping in scale-free networks with hierarchical organization of modularity.pptx
- 电子工业出版社:《计算机网络》课程教学资源(第五版,PPT课件讲稿)第十章 下一代因特网.ppt
- 卷积码的概率译码(PPT讲稿).ppt
- 《ASP动态网页设计实用教程》教学资源(PPT课件讲稿)第8章 Web数据库基础.ppt
- Lower bound for sorting, radix sort.ppt
- 数据传送类指令(PPT讲稿).ppt
- 长春工业大学:《电子商务》课程教学资源(PPT课件)第9章 网络鞋城前台页面.ppt
- 因特网多媒体技术(PPT讲稿).ppt
- International Trade Forms.ppt
- 香港理工大学:Building Robust Wireless LAN for Industrial Control with DSSS-CDMA Cell Phone Network Paradigm.ppt
- 香港浸会大学:《Experiencing Cluster Computing》Class 8 Case Studies.ppt
- 中国科学技术大学:《计算机体系结构》课程教学资源(PPT课件讲稿)动态调度(Cont)、推断执行和ILP.ppt
- 《多媒体教学软件设计》课程PPT教学课件:第13章 多媒体教学软件中脚本编程技巧.ppt
- 山西国际商务职业学院:《网页设计与制作》课程教学资源(PPT课件)第一章 网页设计基础知识.ppt
- 《算法设计技巧与分析》课程教学资源(PPT讲稿)Lecture 8 贪婪法则 Greedy Approach.ppt
- 山东大学:《计算机图形学》课程PPT教学课件(Programming with OpenGL)Part 3:Three Dimensions.ppt
- Integrated analysis of regulatoryand metabolic networks revealsnovel regulatory mechanisms inSaccharomyces cerevisiae.ppt
- 基于语义关联和信息增益的TFIDF改进算法研究.ppt
- 《C程序设计》课程PPT教学课件(电子教案)第六章 函数.ppt
- 《汇编语言程序设计》课程教学资源(PPT课件讲稿)循环与分支程序设计.ppt
- ARM Tachnology:Chapter 3 STM32 Clock and Configuration.ppt
- 《软件工程简介》课程PPT教学课件(可行性研究、需求分析、总体设计、详细设计).ppt
- 利用NetRiver实验系统实现IP协议交互和TCP协议交互.ppt
- 江苏海洋大学(淮海工学院):《Java面向对象程序设计》课程教学资源(PPT课件讲稿)第3章 Java 面向对象编程 3.1 面向对象软件开发概述.pptx
- 《数字图像处理 Digital Image Processing》课程教学资源(PPT课件讲稿)第2章 图像的基本知识及运算.ppt
- 西安电子科技大学:《操作系统 Operating Systems》课程教学资源(PPT课件讲稿)Chapter 02 进程和线程 Processes and Threads.ppt
- 《计算机辅助设计 Computer Aided Design》课程PPT教学课件:第一篇 CAD技术 第一章 几何造型方法介绍和分类.ppt
- 清华大学:高校信息门户建设(PPT讲稿).ppt
- 《汇编语言》课程PPT教学课件:第三章 80x86寻址方式和指令系统.ppt
- 《网站设计与建设 Website design and developments》课程教学资源(PPT课件讲稿)第一部分 Web基础知识 第3章 图形与Web设计.ppt
- 香港城市大学:Introduction to Real-Time Systems(Design and Analysis of Algorithms).pptx
- 《编译原理》课程教学资源(PPT课件讲稿)第五章 语法分析——自下而上分析.ppt
- 香港科技大学:Advanced Topics in NextGeneration Wireless Networks.ppt
- 复旦大学:《数据库基础与应用》课程PPT教学课件(Access案例教程)第1章 数据库基础知识.pptx
- Transport Layer Identification of P2P Traffic.ppt
- 上海交通大学:Basic Raster Graphics Algorithms for Drawing 2D Primitives.ppt
- 《编译原理》课程教学资源(PPT课件讲稿)第七章 中间代码生成.ppt
- 《MATLAB应用基础》课程教学资源(PPT课件讲稿)第4章 MATLAB的数值计算.ppt
- 安徽广播影视职业技术学院:《ASP动态网页设计实用教程》课程教学资源(PPT讲稿)第1章 ASP基础(贾海陶).ppt