《电池与能量存储》课程教学课件(PPT讲稿)Battery Parameter Estimation

Battery ParameterEstimation
Battery Parameter Estimation

ImportanceofBatteryparameterEstimationThe model parameters changes with operatingconditions and battery aging. If they are notupdated, the model is no longer accurate. ThenSoc estimation will lose accuracy.The capacity Q reduces due to battery agingEstimation of Q is the main task for SOHestimationThe parameters reflect battery conditions andare critical indicators for battery diagnosis
Importance of Battery parameter Estimation • The model parameters changes with operating conditions and battery aging. If they are not updated, the model is no longer accurate. Then SOC estimation will lose accuracy. • The capacity Q reduces due to battery aging. Estimation of Q is the main task for SOH estimation. • The parameters reflect battery conditions and are critical indicators for battery diagnosis

Parameter Estimation of RC-BranchBatteryModelsRpOCIState equation is linearROutput equation is nonlinearv(t) = vocv + Ri(t)+v,(t) = f(s(t)+v,(t)+ Ri(t)Theparametersto beestimated:Q,R, Rp,Cp,VocvThe nonlinearfunction f(s)
State equation is linear 1 1 Q s(t) = 1 i(t) vp (t) =− v p (t) + i(t) RpCp Cp Rp R v i vocv vp + - + - Cp v(t) = vocv + Ri(t) + vp (t) = f (s(t)) + vp (t) + Ri(t) Output equation is nonlinear The parameters to be estimated: Q, R, Rp, Cp, Vocv The nonlinear function f(s) Parameter Estimation of RC-Branch Battery Models

APractical Method forObtaining R,Vp,Rp,VocvinRC-BranchModels byOff-line Experimental MethodRVocv
Rp R v i vocv vp + - + - Cp A Practical Method for Obtaining R, Vp, Rp, Vocv in RC-Branch Models by Off-line Experimental Method

Switchoffatt=oBatteryDigital storageoscilloscopeMeasureboththeterminal voltage(V)andcurrent (l)atatime ofdischarge
Battery Measure both the terminal voltage (V) and current (I) at a time of discharge Switch off at t = 0

ObservetheTerminalVoltage(Data Collection)VoltageUsethis curvetoidentifyRpand CpSlowfinal riseV2toOcV,Immediaterise involtage,V,VoUsethisjumptoidentifyRTimeTimeofcurrentinterruptVocychangesslowlyandisassumedtobeaconstant.The RC branch is at the steady state, so that V,is a constant before switching
Observe the Terminal Voltage (Data Collection) Use this curve to identify Rp andCp Use this jump to identifyR V1 V2 V0 • Vocv changes slowly and is assumed to be a constant. • The RC branch is at the steady state, so that Vp is a constant before switching

CalculationofParameters(1) Voc,= Vo +Vi + V2VR:(2) V。 +Vi = Vocv - I(0-)R=)I(0-)V2R=(3) V2 = V,(O) = R,I(0-) =)I(0-)(4) V =V,(0), V,(t) = V,(0)e R.c, Use any data point on the curve to calculate C
Calculation of Parameters t RpCp V1 − (1) Vocv = V0 +V1+V2 (2) V0 +V1 =Vocv − I(0−)R R = I(0−) V2 (3) V2 = Vp (0) = Rp I(0−) R = I(0−) (4) V2 =Vp (0), Vp (t) =Vp (0)e Use any data point on the curve to calculate Cp

ToEstimate Q,we dolocal linearization of f(s) firstAt an SOC point So, the vocy equation can be linearized locallyvo = f(so),af(s)~ +SSy.+c0oCoCVoCVasLinearizedFunctionIs=Soneartheoperatingpoints=(s -so)v= v(t) -vo=cs+v (t) +Ri(t)1oCVp30[ci,1]+ Ri(t)= Cx + Ri(t)2VocvVp.na5uedoC =[ci,1],x =Vs1Supposethatis C,known.010.200.3oTsState ofCharge (SOC)0andRhavealreadybeencalculated.SoVocv
To Estimate Q, we do local linearization of f(s) first 0 1 ocv ocv ocv At an SOC point s0 , the vocv equation can be linearized locally v 0 s=s0 = f (s ), v v 0 + f (s) (s − s ) = v 0 0 ocv + c s, s s = (s − s0 ) v = v(t) − v 0 = c s + v (t) +Ri(t) ocv 1 p s = [c1 ,1] + Ri(t) = Cx + Ri(t) vp s C = [c1 ,1], x = v p s0 0 V ocv Linearized Function near the operatingpoint • Suppose that is C1 known. • 0 V ocv and R have already been calculated

Estimation of OSupposethat C,isknown.0andRhavealreadybeencalculatedVocvaFrom the operating SOC point s and vodefine0OCVs(t) = s(t)-s, v(t) = v(t)-vo=cs+v (t)+Ri(t)1OCVps(t) = li(t)QLet a= I that is to be estimated.9(tRLet the sampling interval be t.Define the sampledvaluesSk= s(kt),Vp,k=V,(kt),i =i(kt),Vh=v(kt)Sk+I=S,+atik'p.k+I=Vpp.kRNote: yp, can be calculated from yp.o step by step (iteratively) since all parameters are known
Estimation of Q From the operating SOC point s and v 0 , define 0 ocv s(t) = s(t) − s , v(t) = v(t)−v 0 = c s + v (t) +Ri(t) 0 ocv 1 p • Suppose that C1 is known. • 0 V ocv and R have already been calculated. 1 i(t) 1 RpCp 1 Cp Let = that is to be estimated. Q p,k +1 s(t) = 1 i(t) Q vp (t) =− vp (t) + Let the sampling interval be . Define the sampled values sk = s(k ),vp,k = vp (k ),ik = i(k ),vk = v(k ) sk +1 = sk + ik p,k p,k R p C p C p Note: vp,k can be calculated from vp,0 step by step (iteratively) since all parameters are known. v = v + − 1 v + 1 i k

Vk+1=C,Sk+I+Vp.k+I+Rik+1+dk =CiS++Ac,Tik +Vp,k+I+Rik+1+dkd, is the measurement noise or error.Vk+1-Vp.k+1-Rik+= CSt +Ac,Ti+dk=CiSk-I +Ac,Tik-I +Ac,Tit+dk...= c,So+ a(c,tik-1 +Ctio+Cti)+dDefine yk = Vk+I-Vp,k+1-Ri+1, u = CTik-I +CTio +CTikk=1,2....,Nyh=Aus+dk,Now, we can use the least-squares estimation method[d uyi..Yn = ::D.IdI[u ]LyNYN=UNa+DNN =(UTUN)"UTYN
dk is the measurement noise or error. Define yk vk +1 = c1 sk +1 + vp,k +1 + Rik +1 + dk = c1 sk+ c1ik +vp,k +1 + Rik +1 + dk vk +1 − vp,k +1 − Rik +1 = c1 sk + c1ik + dk = c1 sk −1 + c1ik −1 + c1ik + dk = = c1 s0 + (c1ik −1 + c1i0 + c1ik ) + dk YN N N N N N N N ˆ ) −1UT Y = vk +1 − vp,k +1 −Rik +1 , uk = c1ik −1 + c1i0 + c1ik yk = uk + dk , k = 1,2, ,N Now, we can use the least-squares estimation method: y1 u1 d1 , U = , D = = yN uN dN YN = UN + DN = (U TU
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《电池与能量存储》课程教学课件(PPT讲稿)Introduction And Course Organization.pptx
- 大连理工大学:《工程热力学》课程教学资源(PPT课件)8 热化学与化学平衡 Thermo-Chemistry & Chemical Equilibrium.ppt
- 大连理工大学:《工程热力学》课程教学资源(PPT课件)7 溶液热力学和相平衡基础 Solution Thermodynamics & Phase Equilibrium.ppt
- 大连理工大学:《工程热力学》课程教学资源(PPT课件)6 热力循环 Thermodynamic Cycles.ppt
- 大连理工大学:《工程热力学》课程教学资源(PPT课件)5 火用分析基础 Exergy.ppt
- 大连理工大学:《工程热力学》课程教学资源(PPT课件)4 气体与蒸汽的热力过程 Thermodynamic Process of Gas & Vapor.ppt
- 大连理工大学:《工程热力学》课程教学资源(PPT课件)3 气体与蒸汽的热力性质 Thermodynamic Property of Gas & Vapor.ppt
- 大连理工大学:《工程热力学》课程教学资源(PPT课件)2 热力学定律 First Law of Thermodynamics.ppt
- 大连理工大学:《工程热力学》课程教学资源(PPT课件)1 基本概念 Basic Concepts of Thermodynamics.ppt
- 大连理工大学:《工程热力学》课程教学资源(PPT课件)0 绪论(热力学基础 Foundation of Thermodynamics).ppt
- 《电气控制与PLC》课程教学资源(教案讲义)项目一 电气一次设备的运行与维护 任务2 一次设备与电气主接线.pdf
- 《电气控制与PLC》课程教学资源(教案讲义)项目六 智能供电系统的方案设计 任务3 短路故障和短路电流计算.pdf
- 《电气控制与PLC》课程教学资源(教案讲义)项目六 智能供电系统的方案设计 任务1 电气主接线方案的设计.pdf
- 《电气控制与PLC》课程教学资源(教案讲义)项目三 二次回路接线与微机保护 任务2 高压断路器控制回路.pdf
- 《电气控制与PLC》课程教学资源(教案讲义)项目一 电气一次设备的运行与维护 任务2 一次设备与电气主接线.pdf
- 《电气控制与PLC》课程教学资源(教案讲义)项目四 二次系统的调试与运行维护.pdf
- 《电气控制与PLC》课程教学资源(教案讲义)项目三 二次回路接线与微机保护 任务3 线路电流保护.pdf
- 《电气控制与PLC》课程教学标准(适用专业:发电厂及电力系统).pdf
- 《电气控制与PLC》课程教学资源(教案讲义)项目三 二次回路接线与微机保护 任务5 变压器保护.pdf
- 《新型太阳电池材料与器件》课程教学资源(教案讲义,共八章).pdf
- 《电池与能量存储》课程教学课件(PPT讲稿)Battery Models.pptx
- 《电池与能量存储》课程教学课件(PPT讲稿)Battery Management Systems and Battery SOC Estimation.pptx
- 《电池与能量存储》课程教学课件(PPT讲稿)Basic Modeling Methods.pptx
