《电池与能量存储》课程教学课件(PPT讲稿)Battery Management Systems and Battery SOC Estimation

BatteryManagement SystemsandBattery SOCEstimation
Battery Management Systems and Battery SOC Estimation

BatterySystems:TheBottleneckof HEV.PHEV,BEVMarketPenetrationMainChallengesforBEV:Price:Need to reach economicthresholdsManycostreductionpotentialsRange:MustbecomparabletoICEandPHEVInfrastructuresFastcharging stations(manypotential solutions)Life-cycle,replacement costs,vehicle resalevaluePerceptions:safety,reliability,etc
Battery Systems: The Bottleneck of HEV, PHEV, BEV Market Penetration Main Challenges for BEV: • Price: Need to reach economic thresholds Many cost reduction potentials • Range: Must be comparable to ICE and PHEV • Infrastructures Fast charging stations (many potential solutions) • Life-cycle, replacement costs, vehicle resale value • Perceptions: safety, reliability, etc

RolesofBatteryManagementSystems(BMS):Monitoring of operation status : SocChargeand dischargedecisions:When andhowCell balancingDiagnosisPrediction of remaininglife: SOHMainDifficulties:AccurateEstimationoftheStateofCharge(SOC)AccurateEstimationoftheBatteryKeyParametersAccurateEstimationof theStateof Health(SOH)DiagnosisduringOperation
Roles of Battery Management Systems (BMS): • Monitoring of operation status : SOC • Charge and discharge decisions: When andhow • Cell balancing • Diagnosis • Prediction of remaining life: SOH Main Difficulties: • Accurate Estimation of the State of Charge (SOC) • Accurate Estimation of the Battery Key Parameters • Accurate Estimation of the State of Health (SOH) • Diagnosis during Operation

WhyisSOC,SOH,parameterestimationcriticallyimportant?AccurateSOCestimationAccurateparameterestimation口Avoidovercharge/over-discharge(Safety)Lessconservativeoperationhigher effectivecapacity,longerrangeBetterqualityofservice (whentocharge)OptimalcoordinationwithotherpowersourcesPromptand reliablediagnosisOptimaloperationforlongercyclelives
Why is SOC, SOH, parameter estimation critically important? Accurate SOC estimation • Avoid overcharge/over-discharge (Safety) • Less conservative operation higher effective capacity, longerrange • Better quality of service (when to charge) • Optimal coordination with other powersources • Prompt and reliable diagnosis • Optimal operation for longer cyclelives Accurate parameterestimation

Implicationsof Real-TimeandIndividualized ModelingOff-Line ModelingReal-Time ModelingEquipmentCheap,Expensive,comprehensivesimpleHighLowData AccuracyData SizeLarge data can be storedDo not want to store large dataTimingData must be real-time processedData can be processed again andagainonthereal clockModel StructureMust use simplified andComplicatedmodelscanbeusedidentifiablemodelsOperating ConditionsControlledinalabenvironmentUncontrolledrealenvironmentAgingNewandold systemsTypicallynewsystemsPopulationOftenusetypical systemsMust deal with large variations inthepopulationChallengesNoteasy,Muchmore difficultNotmuchtimeavailabletobetime consumingconsumedControlForadaptive control,diagnosis,Forrobustandoptimalcontroand decision
Implications of Real-Time and IndividualizedModeling Off-Line Modeling Real-Time Modeling Equipment Expensive, comprehensive Cheap, simple Data Accuracy High Low Data Size Large data can be stored Do not want to store large data Timing Data can be processed again and again Data must be real-time processed on the real clock Model Structure Complicated models can be used Must use simplified and identifiable models Operating Conditions Controlled in a lab environment Uncontrolled real environment Aging Typically new systems New and old systems Population Often use typical systems Must deal with large variations in the population Challenges Not easy, time consuming Much more difficult, Not much time available to be consumed Control For robust and optimal control For adaptive control, diagnosis, and decision

FundamentalsonSOC Estimation:ObservabilityandObserverDesign
Fundamentals on SOC Estimation: Observability and Observer Design

State ObservabilityAx +Bun = the dimension of xCx + DuSuppose that the initial state x(O) is unknowny(t) - C ['e 4(-t) Bu(t)dt - Du(t) = Ce 4^ x(0)If we measure the input u(t) and output y(t), can weuniquely determine x(O) (then x(t) can be alsoderived)?
State Observability y x = Ax + Bu = Cx + Du Suppose that the initial state x(0) is unknown. 0 t At e Bu( A(t− ) y(t) −C )d − Du(t) = Ce x(0) If we measure the input u(t) and output y(t), can we uniquely determine x(0) (then x(t) can be also derived)? n = the dimension of x

CCAObservability Matrix: Wo =CAn-1The systemis observableif and onlyifthe observability matrixis full rank
C CAn−1 CA Observability Matrix: WO = The system is observable if and only if the observability matrix is full rank

Example:BatteryModelsVpRRpNocvThis is a linear circuit, but Vocv Is a nonlinearfunction of the SocVoev = f(s)
Rp R v i vocv + vp - + Cp - This is a linear circuit, but Vocv Is a nonlinear function of theSOC Vocv = f (s) Example: Battery Models

TheStateSpaceModelState equation is lineartRv(t) = Vocv+ Ri(t)+ v,(t) = f(s(t))+V,(t)+ Ri(t)Output equation is nonlinearThis model is mainlyused forthe SOC estimation:From the measured terminal voltage v(t) and the charge ordischarge current i(t), estimate the internal states, especially s(twhich is the state of charge (SOC)This is a nonlinear state observer or state estimationproblem
The State Space Model State equation is linear 1 1 Output equation is nonlinear Q s(t) = 1 i(t) vp (t) =− v p (t) + i(t) RpCp Cp v(t) = vocv + Ri(t)+ vp (t) = f (s(t)) + vp (t) + Ri(t) This model is mainly used for the SOC estimation: From the measured terminal voltage v(t) and the charge or discharge current i(t), estimate the internal states, especially s(t) which is the state of charge (SOC). This is a nonlinear state observer or state estimation problem
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《电池与能量存储》课程教学课件(PPT讲稿)Battery Models.pptx
- 《电池与能量存储》课程教学课件(PPT讲稿)Battery Parameter Estimation.pptx
- 《电池与能量存储》课程教学课件(PPT讲稿)Introduction And Course Organization.pptx
- 大连理工大学:《工程热力学》课程教学资源(PPT课件)8 热化学与化学平衡 Thermo-Chemistry & Chemical Equilibrium.ppt
- 大连理工大学:《工程热力学》课程教学资源(PPT课件)7 溶液热力学和相平衡基础 Solution Thermodynamics & Phase Equilibrium.ppt
- 大连理工大学:《工程热力学》课程教学资源(PPT课件)6 热力循环 Thermodynamic Cycles.ppt
- 大连理工大学:《工程热力学》课程教学资源(PPT课件)5 火用分析基础 Exergy.ppt
- 大连理工大学:《工程热力学》课程教学资源(PPT课件)4 气体与蒸汽的热力过程 Thermodynamic Process of Gas & Vapor.ppt
- 大连理工大学:《工程热力学》课程教学资源(PPT课件)3 气体与蒸汽的热力性质 Thermodynamic Property of Gas & Vapor.ppt
- 大连理工大学:《工程热力学》课程教学资源(PPT课件)2 热力学定律 First Law of Thermodynamics.ppt
- 大连理工大学:《工程热力学》课程教学资源(PPT课件)1 基本概念 Basic Concepts of Thermodynamics.ppt
- 大连理工大学:《工程热力学》课程教学资源(PPT课件)0 绪论(热力学基础 Foundation of Thermodynamics).ppt
- 《电气控制与PLC》课程教学资源(教案讲义)项目一 电气一次设备的运行与维护 任务2 一次设备与电气主接线.pdf
- 《电气控制与PLC》课程教学资源(教案讲义)项目六 智能供电系统的方案设计 任务3 短路故障和短路电流计算.pdf
- 《电气控制与PLC》课程教学资源(教案讲义)项目六 智能供电系统的方案设计 任务1 电气主接线方案的设计.pdf
- 《电气控制与PLC》课程教学资源(教案讲义)项目三 二次回路接线与微机保护 任务2 高压断路器控制回路.pdf
- 《电气控制与PLC》课程教学资源(教案讲义)项目一 电气一次设备的运行与维护 任务2 一次设备与电气主接线.pdf
- 《电气控制与PLC》课程教学资源(教案讲义)项目四 二次系统的调试与运行维护.pdf
- 《电气控制与PLC》课程教学资源(教案讲义)项目三 二次回路接线与微机保护 任务3 线路电流保护.pdf
- 《电气控制与PLC》课程教学标准(适用专业:发电厂及电力系统).pdf
- 《电池与能量存储》课程教学课件(PPT讲稿)Basic Modeling Methods.pptx
