《电池与能量存储》课程教学课件(PPT讲稿)Basic Modeling Methods

Basic ModelingMethods
Basic Modeling Methods

References: Automatic Control Systems, 8th Edition, B.C.KuoF. Golnaraghi, John Wiley & Sons, 2002Matlab/Simulink
References • Automatic Control Systems, 8 th Edition, B.C. Kuo, F. Golnaraghi, John Wiley & Sons, 2002 • Matlab/Simulink

What are mathematics models forphysical systems?They are empirical representations of a physical system'sinput/output relationships and internal behavior by usingmathematics expressions.Themodels can be in differentforms:FunctionsDifferential equationsState space modelsTransfer functionsBlock diagramSimulation modulesThe models can be obtained by different methodsDerivations based on basic principles Experimental data and model fitting Real-time updatinglearning
What are mathematics models for physical systems? • They are empirical representations of a physical system’s input/output relationships and internal behavior by using mathematics expressions. • The models can be in different forms: • Functions • Differential equations • State space models • Transfer functions • Block diagram • Simulation modules • The models can be obtained by different methods: • Derivations based on basic principles • Experimental data and model fitting • Real-time updating • learning

Why do we need mathematics models?:They are cost effective in studying the main features ofphysical, environment, social systemsExamples: Battery SOC estimation, vehicle fuel economy andemission, power system security and reliability, ...They can be used to predict the future behavior of thephysical, environmental, and social systemExamples: Covid infection prediction, trafficpatterns, ... They can be used to evaluate different controls, designs andimpact of decisions.Examples: battery management systems, control systems formotors, autonomous vehicles, ... They can be used to coordinate component designs fromdifferent teams and companies.Examples: autonomous vehicles, battery managementsystems,
Why do we need mathematics models? • They are cost effective in studying the main features of physical, environment, social systems. Examples: Battery SOC estimation, vehicle fuel economy and emission, power system security and reliability, . • They can be used to predict the future behavior of the physical, environmental, and social system. Examples: Covid infection prediction, traffic patterns,. • They can be used to evaluate different controls, designs and impact of decisions. Examples: battery management systems, control systems for motors, autonomous vehicles, . • They can be used to coordinate component designs from different teams and companies. Examples: autonomous vehicles, battery management systems,

Derivation ofDifferential Equation Models
Derivation of Differential Equation Models

Derivation of Models for Electrical Systems(1) Start from the basic circuit component principle:BasicVoltage-CurrentRelationsv(t) = Ri(t)Resistor of R (ohms):V(s) = R I(s)cdv() =i(t)= C(sV(s) - v(0) = I(s)Capacitor of C (farads):dtI(s) + v(0) -[1(s) +Cv(0)]V(s) =SCsI di(t)Inductor ofL (henries):v(t)dt(0)V(s) = LsI(s) - Li(O) = Ls I(s)1S
Derivation of Models for Electrical Systems dt C dv(t) = i(t) C(sV (s) − v(0)) = I (s) Resistor of R (ohms): Capacitor of C (farads): Cs s Cs Inductor of L(henries): V(s) = 1 I(s) + v(0) = 1 I(s) +Cv(0) s V (s) = LsI(s) − Li(0) = Ls I (s) − i(0) v(t) = Ri(t) V(s) = R I(s) dt v(t) = L di(t) (1) Start from the basic circuit component principle: Basic Voltage-CurrentRelations:

V=-RIVRV= RIVR1dtdtdlVdtdt
+V I -+VI -+V I R V = RI CL dt I = C dV dt V = L dI +V I -+VI -+V I R V = −RI CL dt I = − C dV dt V = − L dI

V=RIVRV=-RI1dvdtdtdlVdlVdtdt
-V I +-V+ I +-V I R V = −RI CL dV I = −C dt dt V = − L dI I -V+-V+ I +-V I R V = RI CL dt I = C dV dt V = L dI

(2)BuildUp Circuit InterconnectionsExample: The RC-Branch Model in a BatteryRpVocvVpR,dtpdvdv2PRdtdtRD
Rp R v i vocv vp + - Cp ip - + p p p p p p p p p dvp , vp R dvp dvp vp C dt R dt R C C i =C = i −i dt = i − vp = − + 1 i (2) Build Up Circuit Interconnections Example: The RC-Branch Model in a Battery

Initial Condition Response (Zero-Input Response)i = O, the initial conditionis v, (O)dyVRpCp v(t)=v(0)e二dtR,C.pDT,= R,C,= Time ConstantIf C, is small, then the time constant is small= The initial consdition response will go down to zero relativelyfast= The RC branch will reach the steady state fastSteady State of theRC Branch(after the initial condition response diminishes)dyP= O and v(o) is now a constant.The steady state meansdtdyvFromwehave i, =0dt(8)VFromi-i, =i, we have v,(o)= R, iR,p
p p RpCp p p p p dv v dt R C i = 0, the initial condition is vp (0) − t = − v (t) = v (0)e Initial Condition Response (Zero-Input Response) Tp = RpCp = Time Constant If Cp is small, then the time constant is small. The initial consdition response will go down to zero relativelyfast The RC branch will reach the steady state fast. Steady State of the RC Branch (after the initial condition response diminishes) p p p p p p p p dt dt R dv The steady state means p = 0 and v () is now a constant. Fromi = C dvp , wehave i = 0 v () From p = i −i = i, we have v () = R i
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《电池与能量存储》课程教学课件(PPT讲稿)Battery Management Systems and Battery SOC Estimation.pptx
- 《电池与能量存储》课程教学课件(PPT讲稿)Battery Models.pptx
- 《电池与能量存储》课程教学课件(PPT讲稿)Battery Parameter Estimation.pptx
- 《电池与能量存储》课程教学课件(PPT讲稿)Introduction And Course Organization.pptx
- 大连理工大学:《工程热力学》课程教学资源(PPT课件)8 热化学与化学平衡 Thermo-Chemistry & Chemical Equilibrium.ppt
- 大连理工大学:《工程热力学》课程教学资源(PPT课件)7 溶液热力学和相平衡基础 Solution Thermodynamics & Phase Equilibrium.ppt
- 大连理工大学:《工程热力学》课程教学资源(PPT课件)6 热力循环 Thermodynamic Cycles.ppt
- 大连理工大学:《工程热力学》课程教学资源(PPT课件)5 火用分析基础 Exergy.ppt
- 大连理工大学:《工程热力学》课程教学资源(PPT课件)4 气体与蒸汽的热力过程 Thermodynamic Process of Gas & Vapor.ppt
- 大连理工大学:《工程热力学》课程教学资源(PPT课件)3 气体与蒸汽的热力性质 Thermodynamic Property of Gas & Vapor.ppt
- 大连理工大学:《工程热力学》课程教学资源(PPT课件)2 热力学定律 First Law of Thermodynamics.ppt
- 大连理工大学:《工程热力学》课程教学资源(PPT课件)1 基本概念 Basic Concepts of Thermodynamics.ppt
- 大连理工大学:《工程热力学》课程教学资源(PPT课件)0 绪论(热力学基础 Foundation of Thermodynamics).ppt
- 《电气控制与PLC》课程教学资源(教案讲义)项目一 电气一次设备的运行与维护 任务2 一次设备与电气主接线.pdf
- 《电气控制与PLC》课程教学资源(教案讲义)项目六 智能供电系统的方案设计 任务3 短路故障和短路电流计算.pdf
- 《电气控制与PLC》课程教学资源(教案讲义)项目六 智能供电系统的方案设计 任务1 电气主接线方案的设计.pdf
- 《电气控制与PLC》课程教学资源(教案讲义)项目三 二次回路接线与微机保护 任务2 高压断路器控制回路.pdf
- 《电气控制与PLC》课程教学资源(教案讲义)项目一 电气一次设备的运行与维护 任务2 一次设备与电气主接线.pdf
- 《电气控制与PLC》课程教学资源(教案讲义)项目四 二次系统的调试与运行维护.pdf
- 《电气控制与PLC》课程教学资源(教案讲义)项目三 二次回路接线与微机保护 任务3 线路电流保护.pdf
