深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)决策与对策(决策论)运筹学3类 INTRODUCTION TO DATA ANALYSIS

CHAPTER14 INTRODUCTION TO DATAANALYSIS
CHAPTER14: INTRODUCTION TO DATA ANALYSIS

14.1 INTRODUCTION There are many situations in business where data is collected and analysed The key ideas of data analysis are important in the modern business environment Summarising and understanding the main features of the variables contained within the data, and investigate the nature of any linkages between the variables that may exist
14.1 INTRODUCTION There are many situations in business where data is collected and analysed. The key ideas of data analysis are important in the modern business environment. Summarising and understanding the main features of the variables contained within the data, and investigate the nature of any linkages between the variables that may exist

14.2 WHAT IS DATA ◆ Example I Population: the set of all people/objects of interest in the study being undertaken ry large Enumerated precisely Cannot be Enumerated physically Population member
14.2 WHAT IS DATA Example 1 Population: the set of all people/objects of interest in the study being undertaken. – Very large – Enumerated precisely – Cannot be Enumerated physically Population member

The information for each member of the population Age Gender Parish Will you vote in the by-election? Will you vote for me Variables: one piece of intormation Five variables
The information for each member of the population – Age: – Gender: – Parish: – Will you vote in the by-election?: – Will you vote for me? Variables: one piece of information – Five variables

o To investigate the connection between the two pairs of variables Will you vote for me' and 'Age Will you vote for me' and Gender' Will you vote for me' and Parish' Population data is used the outcomes of the analysis are precise >'perfect information results
To investigate the connection between the two pairs of variables: – 'Will you vote for me' and 'Age' – 'Will you vote for me' and 'Gender' – 'Will you vote for me' and 'Parish' Population data is used → the outcomes of the analysis are precise → 'perfect information' results

◆ Example2 VARIABLE Customer's Age Household Income(E per annum) Estimated monthly outgoing on mortgage/rent/rates/utilities/credit card payments etc. Does the customer own their own house? Coded 0=Yes, 1=No The Region in which the customer is resident Coded South west 2 South east London Midland North The amount borrowed on credit o Population: the set of all customers
Example 2 Population: the set of all customers

A sensible initial set of questions is Do you understand exactly what each variable is measuring/recording Do you understand the problem under investigation and are the objectives of the investigation clear
A sensible initial set of questions is: – Do you understand exactly what each variable is measuring/recording? – Do you understand the problem under investigation and are the objectives of the investigation clear.?

14.3 DESCRIBING VARIABLES Classification of variable types Attribute variables Measured variables
14.3 DESCRIBING VARIABLES Classification of variable types – Attribute variables – Measured variables

Attribute Variables: An attribute variable has its outcomes described in terms of its characteristics or attributes Example 1 By-Election Data Attiute arable Outcome nder or fema 「W则m
Attribute Variables: – An attribute variable has its outcomes described in terms of its characteristics or attributes. – Example 1 'By-Election Data':

Example 2 'Credit Data Does the customer own their own house? 0=Yes 1=No The Region in which the customer is resident? South West 2--South east 3--London 4--Midland 5— North Handling attribute data is to give it a numerical codeo.. 2
– Example 2 'Credit Data' • Does the customer own their own house? – 0=Yes 1=No • The Region in which the customer is resident? – 1—South West – 2—South East – 3—London – 4—Midland – 5—North • Handling attribute data is to give it a numerical code 0, 1, 2 ,…
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)决策与对策(决策论)运筹学3类 CAPITAL INVESTMENT DECISIONS.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)决策与对策(决策论)运筹学3类 The Theory of the Firm.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)决策与对策(决策论)运筹学3类 POST OPTIMALITY ANALYSIS.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)决策与对策(决策论)运筹学3类 A COMPARATIVE LOOK at MODELS of COMPANY.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)决策与对策(决策论)运筹学2类 决策分析 Decision Analysis.ppt
- 深圳大学管理学院:《运筹学》期末考试试卷2007.11运筹学试题B卷(答案).doc
- 深圳大学管理学院:《运筹学》期末考试试卷2007.11运筹学试题B卷(试卷).doc
- 深圳大学管理学院:《运筹学》期末考试试卷2007.11运筹学试题A卷(答案).doc
- 深圳大学管理学院:《运筹学》期末考试试卷2007.11运筹学试题A卷(试卷).doc
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)图论(网络计划与项目评审)运筹学1类 用PERT、CPM进行项目管理.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)图论(网络最优化问题)运筹学2类 网络最优化问题 Network Optimization Problems.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)图论(图论与网络分析)运筹学3类 LINEAR PROGRAMME AND SOLVING GRAPHICALLY.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)规划论(非线性规划)运筹学1类 高阶运筹学无约束极值问题.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)规划论(非线性规划)运筹学1类 约束最优化问题.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)规划论(非线性规划)运筹学1类 无约束最优化问题.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)规划论(非线性规划)运筹学1类 最优化搜索算法的结构与一维搜索.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)规划论(目标规划)运筹学1类 目标规划.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)规划论(指派问题)运筹学2类 指派问题与运输问题 Transportation and Assignment Problems.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)规划论(单纯型法)运筹学1类 高阶运筹学 线性规划(单纯形法的矩阵描述及改进单纯形法介绍).ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)规划论(线性规划)运筹学3类 LINEAR PROGRAMMING.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)决策与对策(决策论)运筹学3类 EXPLORING RELATIONSHIPS.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)决策与对策(决策论)运筹学3类 THE FURTHER DATA ANALYSIS.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)决策与对策(决策论)运筹学3类 FURTHER DATA ANALYSIS 2.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)决策与对策(决策论)运筹学3类 Business Decision Modelling.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)决策与对策(决策论)运筹学3类 OUTPUT and ANALYSIS.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)存储论 运筹学3类 DEMAND and SUPPLY MODELLING.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)专题(计算机仿真)概念化仿真模型 Case-based Reasoning For Simulation Modeling:Issues And Challenges.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)专题(计算机仿真)基于案例的概念化仿真模型 Case-based Reasoning For Simulation Modeling:Issues And Challenges.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)专题(计算机仿真)分布仿真模型 Distributed Simulation Modeling of Warehousing Operations.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)专题(计算机仿真)Discrete-Event仿真模型与分析 A Brief Introduction to Discrete-Event Simulation Modeling and Analysis.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)专题(计算机仿真)计算机仿真 A Brief Introduction to Discrete-Event Simulation Modeling and Analysis.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)预测 运筹学3类 FORECASTING.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)博弈论 运筹学1类 美国为什么发动战争(1991年海湾战争的幕后交易).ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)专题 运筹学1类 智能优化算法(智能优化计算简介).ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)专题 运筹学1类 层次分析 The Analytic Hierarchy Process(AHP).ppt
- 深圳大学管理学院:《运筹学与最优化方法》课程教学资源(PPT课件讲稿)第10章 智能优化计算.ppt
- 深圳大学管理学院:《运筹学与最优化方法》课程教学资源(PPT课件讲稿)第1章 运筹学思想与运筹学建模.ppt
- 深圳大学管理学院:《运筹学与最优化方法》课程教学资源(PPT课件讲稿)第2章 基本概念和基本理论.ppt
- 深圳大学管理学院:《运筹学与最优化方法》课程教学资源(PPT课件讲稿)第3章 线性规划.ppt
- 深圳大学管理学院:《运筹学与最优化方法》课程教学资源(PPT课件讲稿)第4章 最优化搜索算法的结构与一维搜索.ppt