深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)专题(计算机仿真)计算机仿真 A Brief Introduction to Discrete-Event Simulation Modeling and Analysis

A Brief Introduction to Discrete-Event Simulation Modeling and Analysis Ming zhou, PhD, Associate Professor Indiana State University, Terre Haute, IN. 47809, USA (812)237-3983; imming@isugw. instate. edu
A Brief Introduction to Discrete-Event Simulation Modeling and Analysis Ming Zhou, PhD., Associate Professor Indiana State University, Terre Haute, IN 47809, USA (812)237-3983; imming@isugw.indstate.edu

Slide 1: Introduction to Simulation s Systems and models of a system o Concept of a system(input, output, process resources, behavior, performance measures o Interest of studying a system(design, planning control, improvement, and optimization) Models of a system: representation of real systems ● Physical models Logical or mathematical models
Slide 1: Introduction to Simulation Systems and models of a system ⚫ Concept of a system (input, output, process, resources, behavior, performance measures) ⚫ Interest of studying a system (design, planning, control, improvement, and optimization) ⚫ Models of a system: representation of real systems ⚫ Physical models ⚫ Logical or mathematical models

System and models of system System Study/experiment Study/experiment with the with a model of actual system the system Physical Mathematical or model logical model Analytical Simulation mode model
System and models of system System Study/experiment with the actual system Study/experiment with a model of the system Physical model Mathematical or logical model Simulation model Analytical model

Slide 2: Introduction to Simulation s Studying a system via analytical model V.s. simulation model(prescriptive V.S. descriptive models) Analytical model >Performance measures are expressed as mathematical functions of input parameters, result is exact and close form solution applicable only to simple problems ● Simulation model→> a logical model that is evaluated(numerically) over a time period of interest. Performance measures are estimated from model-generated data with statistical procedures applicable to systems of any complexity
Studying a system via analytical model v.s. simulation model (prescriptive v.s. descriptive models) ⚫ Analytical model → Performance measures are expressed as mathematical functions of input parameters, result is exact and close form solution, applicable only to simple problems. ⚫ Simulation model → a logical model that is evaluated (numerically) over a time period of interest, Performance measures are estimated from model-generated data with statistical procedures, applicable to systems of any complexity. Slide 2: Introduction to Simulation

Slide 3: Introduction to Simulation g Why use simulation models? It is often of interest to study a real-world system to generate knowledge on its behavior or dynamics. However it is usually necessary to use a simulation model for the following reasons Experimentation with the real system is often disruptive (e.g. study of a flow-line manufacturing process) Experimentation with the real system is not cost-effective (e.g. study of large logistic/distribution center Experimentation with the real system is simply impossible (e.g. study of space rocket launching operations
Slide 3: Introduction to Simulation Why use simulation models? It is often of interest to study a real-world system to generate knowledge on its behavior or dynamics. However it is usually necessary to use a simulation model for the following reasons: Experimentation with the real system is often disruptive (e.g. study of a flow-line manufacturing process) Experimentation with the real system is not cost-effective (e.g. study of large logistic/distribution center) Experimentation with the real system is simply impossible (e.g. study of space rocket launching operations)

Slide 4: Introduction to Simulation g Definition of simulation The process of designing and creating a computerized model of a real or proposed system for the purpose of numerical experiment to develop better understanding of the behavior/dynamics of that system under a given set of conditions g Simulation is a powerful tool for design, modeling, analysis, and optimization of systems. It is one of the target technologies for the 21st century identified by the NRC, NIST, NSF, IE, SME, ASME and many others
Definition of simulation The process of designing and creating a computerized model of a real or proposed system for the purpose of numerical experiment to develop better understanding of the behavior/dynamics of that system under a given set of conditions. Simulation is a powerful tool for design, modeling, analysis, and optimization of systems. It is one of the target technologies for the 21st century identified by the NRC, NIST, NSF, IIE, SME, ASME and many others … Slide 4: Introduction to Simulation

Slide 5: Introduction to Simulation ● Types of simulation o Static V.s. dynamic(Is time a factor?) o Continuous V.S. discrete(nature of change along time) Deterministic V.s. stochastic (Is randomness important c Application of simulation(See demos of application) Manufacturing Logistics transportation system Healthcare Service systems Military systems -Telecommunication Entertainment Robotics simulation
Types of simulation ⚫ Static v.s. dynamic (Is time a factor?) ⚫ Continuous v.s. discrete (nature of change along time) ⚫ Deterministic v.s. stochastic (Is randomness important?) Application of simulation (See demos of application) - Manufacturing - Logistics & transportation system - Healthcare - Service systems - Military systems - Telecommunication - Entertainment - Robotics simulation Slide 5: Introduction to Simulation

Slide 6: Introduction to Simulation s Application of simulation(in terms of decision making) System design and evaluation Process/system improvement and optimization Policy or strategy evaluation (What-if analysis) g Limitations of simulation Simulation cannot Provide exact solutions Find optimal solutions(in exact form) Compensate for inadequate data or poor management decisions Provide fast and easy solutions to complex problems
Application of simulation (in terms of decision making) - System design and evaluation - Process/system improvement and optimization - Policy or strategy evaluation (“What-if” analysis) Limitations of simulation: Simulation cannot: - Provide exact solutions - Find optimal solutions (in exact form) - Compensate for inadequate data or poor management decisions - Provide fast and easy solutions to complex problems Slide 6: Introduction to Simulation

Slide 7: Introduction to Simulation Implementation of simulation By hand (for small problems, e.g. Buffon Needle problem) By computers with software(3 levels of abstraction) Programming in general-purpose language(e.g C/C++, Pascal, Fortran) Simulation language(SIMAN, GPSS, SLAM High level simulators(GUI based, menu-driven, such as ARENAC, AutoModo, ProModelo) c Issues of modeling efficiency, flexibility and ease of implementation, hierarchical structure
Implementation of simulation ⚫ By hand (for small problems, e.g. Buffon Needle problem) ⚫ By computers with software (3 levels of abstraction): ⚫ Programming in general-purpose language (e.g., C/C++,Pascal, Fortran) ⚫ Simulation language (SIMAN, GPSS, SLAM) ⚫ High level simulators (GUI based, menu-driven, such as ARENA©, AutoMod©, ProModel©) Issues of modeling efficiency, flexibility and ease of implementation, hierarchical structure. Slide 7: Introduction to Simulation

Issues related to level of modeling constructs: modeling efficiency versus modeling flexibility Modeling flexibility Modeling efficiency l of modeling abstraction hierarchy
Issues related to level of modeling constructs: modeling efficiency versus modeling flexibility Level of modeling abstraction hierarchy Modeling efficiency Modeling flexibility
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)专题(计算机仿真)Discrete-Event仿真模型与分析 A Brief Introduction to Discrete-Event Simulation Modeling and Analysis.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)专题(计算机仿真)分布仿真模型 Distributed Simulation Modeling of Warehousing Operations.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)专题(计算机仿真)基于案例的概念化仿真模型 Case-based Reasoning For Simulation Modeling:Issues And Challenges.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)专题(计算机仿真)概念化仿真模型 Case-based Reasoning For Simulation Modeling:Issues And Challenges.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)存储论 运筹学3类 DEMAND and SUPPLY MODELLING.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)决策与对策(决策论)运筹学3类 OUTPUT and ANALYSIS.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)决策与对策(决策论)运筹学3类 Business Decision Modelling.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)决策与对策(决策论)运筹学3类 FURTHER DATA ANALYSIS 2.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)决策与对策(决策论)运筹学3类 THE FURTHER DATA ANALYSIS.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)决策与对策(决策论)运筹学3类 EXPLORING RELATIONSHIPS.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)决策与对策(决策论)运筹学3类 INTRODUCTION TO DATA ANALYSIS.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)决策与对策(决策论)运筹学3类 CAPITAL INVESTMENT DECISIONS.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)决策与对策(决策论)运筹学3类 The Theory of the Firm.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)决策与对策(决策论)运筹学3类 POST OPTIMALITY ANALYSIS.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)决策与对策(决策论)运筹学3类 A COMPARATIVE LOOK at MODELS of COMPANY.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)决策与对策(决策论)运筹学2类 决策分析 Decision Analysis.ppt
- 深圳大学管理学院:《运筹学》期末考试试卷2007.11运筹学试题B卷(答案).doc
- 深圳大学管理学院:《运筹学》期末考试试卷2007.11运筹学试题B卷(试卷).doc
- 深圳大学管理学院:《运筹学》期末考试试卷2007.11运筹学试题A卷(答案).doc
- 深圳大学管理学院:《运筹学》期末考试试卷2007.11运筹学试题A卷(试卷).doc
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)预测 运筹学3类 FORECASTING.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)博弈论 运筹学1类 美国为什么发动战争(1991年海湾战争的幕后交易).ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)专题 运筹学1类 智能优化算法(智能优化计算简介).ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)专题 运筹学1类 层次分析 The Analytic Hierarchy Process(AHP).ppt
- 深圳大学管理学院:《运筹学与最优化方法》课程教学资源(PPT课件讲稿)第10章 智能优化计算.ppt
- 深圳大学管理学院:《运筹学与最优化方法》课程教学资源(PPT课件讲稿)第1章 运筹学思想与运筹学建模.ppt
- 深圳大学管理学院:《运筹学与最优化方法》课程教学资源(PPT课件讲稿)第2章 基本概念和基本理论.ppt
- 深圳大学管理学院:《运筹学与最优化方法》课程教学资源(PPT课件讲稿)第3章 线性规划.ppt
- 深圳大学管理学院:《运筹学与最优化方法》课程教学资源(PPT课件讲稿)第4章 最优化搜索算法的结构与一维搜索.ppt
- 深圳大学管理学院:《运筹学与最优化方法》课程教学资源(PPT课件讲稿)第5章 无约束最优化方法.ppt
- 深圳大学管理学院:《运筹学与最优化方法》课程教学资源(PPT课件讲稿)第6章 约束最优化方法.ppt
- 深圳大学管理学院:《运筹学与最优化方法》课程教学资源(PPT课件讲稿)第7章 目标规划.ppt
- 深圳大学管理学院:《运筹学与最优化方法》课程教学资源(PPT课件讲稿)第8章 整数规划.ppt
- 深圳大学管理学院:《运筹学与最优化方法》课程教学资源(PPT课件讲稿)第9章 层次分析 The Analytic Hierarchy Process(AHP).ppt
- 深圳大学:《人力资源开发与管理》论文——深圳万科地产人力资源培训特点、缺陷及对策分析.pdf
- 深圳大学:《人力资源开发与管理》课程资料——期末总复习题.pdf
- 《建设项目风险管理》课程教学参考资料:Dealing with the construction regulatory regime in the PRC——Practical Solutions for Foreign Investors and Contractors.pdf
- 《建设项目风险管理》课程教学参考资料:discussion of SHEN paper.pdf
- 《建设项目风险管理》课程教学参考资料:Risk allocation in the private provision of public infrastructure.pdf
- 《建设项目风险管理》课程教学参考资料:Risk assessment ofr construction joint ventures in china.pdf