《微分流形》课程教学资源(英文讲义)PSet7-1 DE RHAM COHOMOLOGY GROUPS

PROBLEM SET 7.PART1:DE RHAM COHOMOLOGYGROUPSDUE:DEC.28())[An infinite dimensional Hlr](a) Find a closed 1-form on R2(0,O)) that is not exact.(b) Let M =R2-z2.Prove: Har(M) is infinitely dimensional.(2) [The de Rham cohomologies of the union](a) Let M = Mi U M2 be the disjoint union of two smooth manifolds. Find therelation between Hke(M) and Hkr(M).(b) Calculate the de Rham cohomology groups of sl via Mayer-Vietoris sequence.()What if M =U,M, is the disjoint union of countably many smooth manifolds?(3)[Wittendeformation]Let M be a smooth manifold, and e 2'(M) be an exact 1-form.(a) For any k, define de : 2h(M) → 2k+1(M) byde(w) = dw +0 ^w.Prove: de(dgw) = 0 for all w E 2*(M)(b) Consider the complex0 - 2(M) d2(M) e, ... d 0m-1(M) d 2m(M) → 0.Define z(M), B(M) and H(M), and prove: H(M) is isomorphic to Har(M)(4)[Missing parts in the proof of Mayer-Vietoris sequence](a)ProveProposition6.2.1.(b) (NOT required) To prove Theorem 6.2.4, we need to prove six inclusion relations.We proved one in class. Try to prove the rest five relations.[Applications of Mayer-Vietoris sequence](5)(a) Let Mi,M2 be connected manifolds, and M = Mi#M, be their connected sum.Find the relation between Har(M) and Har(Mi), Har(M2).(b) Compute the de Rham cohomology groups of Rp2 and Cp2(c) (NOT required) Compute the de Rham cohomology groups of Ripn and Cpn[Kunneth formulaand its applications](6)(a) Read g6.2.2"Application 3: Kunneth formula"(b) Prove Har(Tn) ~ R(r).1
PROBLEM SET 7, PART 1: DE RHAM COHOMOLOGY GROUPS DUE: DEC. 28 (1) [An infinite dimensional H1 dR] (a) Find a closed 1-form on R 2 − {(0, 0)} that is not exact. (b) Let M = R 2 − Z 2 . Prove: H1 dR(M) is infinitely dimensional. (2) [The de Rham cohomologies of the union] (a) Let M = M1 ∪ M2 be the disjoint union of two smooth manifolds. Find the relation between Hk dR(M) and Hk dR(Mi). (b) Calculate the de Rham cohomology groups of S 1 via Mayer-Vietoris sequence. (c) What if M = ∪∞ i=1Mi is the disjoint union of countably many smooth manifolds? (3) [Witten deformation] Let M be a smooth manifold, and θ ∈ Ω 1 (M) be an exact 1-form. (a) For any k, define dθ : Ωk (M) → Ω k+1(M) by dθ(ω) = dω + θ ∧ ω. Prove: dθ(dθω) = 0 for all ω ∈ Ω k (M). (b) Consider the complex 0 → Ω 0 (M) dθ −→ Ω 1 (M) dθ −→ · · · dθ −→ Ω m−1 (M) dθ −→ Ω m(M) → 0. Define Z k θ (M), Bk θ (M) and Hk θ (M), and prove: Hk θ (M) is isomorphic to Hk dR(M). (4) [Missing parts in the proof of Mayer-Vietoris sequence] (a) Prove Proposition 6.2.1. (b) (NOT required) To prove Theorem 6.2.4, we need to prove six inclusion relations. We proved one in class. Try to prove the rest five relations. (5) [Applications of Mayer-Vietoris sequence] (a) Let M1, M2 be connected manifolds, and M = M1#M2 be their connected sum. Find the relation between Hk dR(M) and Hk dR(M1), Hk dR(M2). (b) Compute the de Rham cohomology groups of RP2 and CP2 . (c) (NOT required) Compute the de Rham cohomology groups of RPn and CPn . (6) [Kunneth formula and its applications ] (a) Read §6.2.2 ”Application 3: Kunneth formula”. (b) Prove Hk dR(T n ) ' R( n k ) . 1

2PROBLEMSET7,PART1:DERHAMCOHOMOLOGYGROUPSDUE:DEC.28(c) For any compact manifold M, define pm(t) to bethe polynomial pm(t)r=ob;(M)t.Prove:If M,N arecompact, thenPMxN(t) = PM(t)pN(t).(In particular, weget x(M × N) =x(M)x(N).)(d)(NOT required)Prove:Sm ×sn ishomeomorphicto Sm×sn'if and only ifm,n) = (m',n'].(7) [Not required] Let G be a compact connected Lie group acting smoothly on asmooth manifold M (from left).(a) For each k, define left-invariant k-forms on M, and then define the"Kth left-invariant de Rham cohomology group" H(M).(b)Prove H(M)=Har(M),as follow:() Let i:h(M) ar(M) be the inclusion map. Prove: iinduces a linearmap i : H(M) → Har(M).(ii) Prove i is injective.Hint:Let dgbea normalized Haar measure on G,in otherwords,dgisthemeasure associated toa volumeform α on G which is bothleftand right invariant, such that Jeα=1.[You maytry to prove theexistence of such dgif youwant.JFor eachwE2(M)definetheaveraging of wwithrespecttoGtobeA(w) =Twdg.Show thatA is a linearmapfrom 2(M)to 2(M),which inducesalinearmapA:Har(M)-→H(M).Moreover,proveAoi+=Id.(ii) Prove: i, is surjective.Hint: It's enough to prove [A(w)] = [w] for any [w] e Hkr(M). First noticethat the map A above can be rewritten asTw^a,A(w) =whereT:GxM-→M isthe action ofG on M,and :GxM-Gistheprojection,and one regardsthe differential form-*wA*aasatop form on G (with M variables as parameters). Take a contractibleneighborhood U ofe in G,and a top formβon Gwhich is supportedin U and satisfies Jβ=1.Then there exists a differential form n onGsothata-β=d.(Why?)LetTu:UxM→MbetherestrictionofT.Then*wΛr*β=TuwΛ*β.FinallyproveTuw=元Mw+dnforsomedifferential formn onUxM,whereM:UxM→M istheprojection(c) Prove: Har(Tn) ~ span[dr A...Ade[1≤i<...<ik≤n.]
2 PROBLEM SET 7, PART 1: DE RHAM COHOMOLOGY GROUPS DUE: DEC. 28 (c) For any compact manifold P M, define pM(t) to be the polynomial pM(t) = n i=0 bi(M)t i . Prove: If M, N are compact, then pM×N (t) = pM(t)pN (t). (In particular, we get χ(M × N) = χ(M)χ(N).) (d) (NOT required) Prove: S m × S n is homeomorphic to S m0 × S n 0 if and only if {m, n} = {m0 , n0}. (7) [Not required] Let G be a compact connected Lie group acting smoothly on a smooth manifold M (from left). (a) For each k, define left-invariant k-forms on M, and then define the “k th leftinvariant de Rham cohomology group” Hk L (M). (b) Prove Hk L (M) ' Hk dR(M), as follow: (i) Let i : Ωk L (M) ,→ Ω k dR(M) be the inclusion map . Prove: i induces a linear map i∗ : Hk L (M) → Hk dR(M). (ii) Prove i∗ is injective. Hint: Let dg be a normalized Haar measure on G, in other words, dg is the measure associated to a volume form α on G which is both left and right invariant, such that R G α = 1. [You may try to prove the existence of such dg if you want.] For each ω ∈ Ω k (M) define the averaging of ω with respect to G to be A(ω) = Z G τ ∗ g ω dg. Show that A is a linear map from Ωk (M) to Ωk L (M), which induces a linear map A∗ : Hk dR(M) → Hk L (M). Moreover, prove A∗ ◦ i∗ = Id. (iii) Prove: i∗ is surjective. Hint: It’s enough to prove [A(ω)] = [ω] for any [ω] ∈ Hk dR(M). First notice that the map A above can be rewritten as A(ω) = Z G τ ∗ω ∧ π ∗α, where τ : G × M → M is the action of G on M, and π : G × M → G is the projection, and one regards the differential form τ ∗ω ∧π ∗α as a top form on G (with M variables as parameters). Take a contractible neighborhood U of e in G, and a top form β on G which is supported in U and satisfies R G β = 1. Then there exists a differential form η on G so that α−β = dγ. (Why?) Let τU : U ×M → M be the restriction of τ . Then τ ∗ω ∧ π ∗β = τ ∗ U ω ∧ π ∗β. Finally prove τ ∗ U ω = π ∗ Mω + dη for some differential form η on U × M, where πM : U × M → M is the projection. (c) Prove: Hk dR(T n ) ' span{dxi1 ∧ · · · ∧ dxik | 1 ≤ i1 < · · · < ik ≤ n.}
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《微分流形》课程教学资源(英文讲义)第5章 流形上的微积分 5.4 Stokes公式.pdf
- 《微分流形》课程教学资源(英文讲义)第5章 流形上的微积分 5.3 流形上的积分.pdf
- 《微分流形》课程教学资源(英文讲义)第5章 流形上的微积分 5.2 流形上的张量与微分形式.pdf
- 《微分流形》课程教学资源(英文讲义)PSet6-2 INTEGRALS ON MANIFOLDS.pdf
- 《微分流形》课程教学资源(英文讲义)第5章 流形上的微积分 5.1 张量与微分形式.pdf
- 《微分流形》课程教学资源(英文讲义)第4章 李群初步 4.4 Lie群作用.pdf
- 《微分流形》课程教学资源(英文讲义)PSet6-1 TENSORS AND DIFFERENTIAL FORMS.pdf
- 《微分流形》课程教学资源(英文讲义)PSet5-2 LIE GROUPS ACTIONS.pdf
- 《微分流形》课程教学资源(英文讲义)第4章 李群初步 4.3 Lie子群.pdf
- 《微分流形》课程教学资源(英文讲义)第4章 李群初步 4.2 Lie同态与指数映射.pdf
- 《微分流形》课程教学资源(英文讲义)PSet5-1 LIE GROUPS AND LIE ALGEBRAS.pdf
- 《微分流形》课程教学资源(英文讲义)第3章 光滑向量场 3.2 光滑向量场的积分曲线.pdf
- 《微分流形》课程教学资源(英文讲义)第3章 光滑向量场 3.4 分布.pdf
- 《微分流形》课程教学资源(英文讲义)第4章 李群初步 4.1 Lie 群及其Lie代数.pdf
- 《微分流形》课程教学资源(英文讲义)PSet4-2 FLOWS, DISTRIBUTIONS.pdf
- 《微分流形》课程教学资源(英文讲义)第3章 光滑向量场 3.1 光滑向量场.pdf
- 《微分流形》课程教学资源(英文讲义)第3章 光滑向量场 3.3 向量场生成的动力系统.pdf
- 《微分流形》课程教学资源(英文讲义)PSet4-1 VECTOR FIELDS.pdf
- 《微分流形》课程教学资源(英文讲义)第2章 光滑映射的微分及其应用 2.6 管状邻域定理.pdf
- 《微分流形》课程教学资源(英文讲义)第2章 光滑映射的微分及其应用 2.7 横截性.pdf
- 《微分流形》课程教学资源(英文讲义)第6章 De Rham理论 6.1 de Rham上同调群.pdf
- 《微分流形》课程教学资源(英文讲义)第6章 De Rham理论 6.2 Mayer-Vietoris序列.pdf
- 《微分流形》课程教学资源(英文讲义)PSet7-2 DE RHAM COHOMOLOGY GROUPS.pdf
- 《微分流形》课程教学资源(英文讲义)第6章 De Rham理论 6.3 紧支集de Rham上同调群.pdf
- 《微分流形》课程教学资源(英文讲义)第6章 De Rham理论 6.5 Poincar´e对偶及其应用.pdf
- 《微分流形》课程教学资源(英文讲义)第6章 De Rham理论 6.4 映射度理论.pdf
- 《微分流形》课程教学资源(英文讲义)第6章 De Rham理论 6.6 Thom类及其应用.pdf
- 《半经典微局部分析 Semiclassical Microlocal Analysis》课程教学资源(英文讲义)Lec01 INTRODUCTION.pdf
- 《半经典微局部分析 Semiclassical Microlocal Analysis》课程教学资源(英文讲义)PSet1 SEMICLASSICAL MICROLOCAL ANALYSIS.pdf
- 《半经典微局部分析 Semiclassical Microlocal Analysis》课程教学资源(英文讲义)Lec02 CLASSICAL V.S. QUANTUM.pdf
- 《半经典微局部分析 Semiclassical Microlocal Analysis》课程教学资源(英文讲义)Lec03 QUANTIZATION V.S. SEMI-CLASSICAL LIMIT.pdf
- 《半经典微局部分析 Semiclassical Microlocal Analysis》课程教学资源(英文讲义)PSet2 SEMICLASSICAL MICROLOCAL ANALYSIS.pdf
- 《半经典微局部分析 Semiclassical Microlocal Analysis》课程教学资源(英文讲义)Lec05 THE METHOD OF STATIONARY PHASE.pdf
- 《半经典微局部分析 Semiclassical Microlocal Analysis》课程教学资源(英文讲义)Lec04 THE FOURIER TRANSFORM.pdf
- 《半经典微局部分析 Semiclassical Microlocal Analysis》课程教学资源(英文讲义)Lec06 SEMICLASSICAL QUANTIZATION.pdf
- 《半经典微局部分析 Semiclassical Microlocal Analysis》课程教学资源(英文讲义)Lec07 WEYL QUANTIZATION:EXAMPLES.pdf
- 《半经典微局部分析 Semiclassical Microlocal Analysis》课程教学资源(英文讲义)Lec09 THE COMPOSITION FORMULA.pdf
- 《半经典微局部分析 Semiclassical Microlocal Analysis》课程教学资源(英文讲义)Lec08 WEYL QUANTIZATION VIA LINEAR EXPONENTIALS.pdf
- 《半经典微局部分析 Semiclassical Microlocal Analysis》课程教学资源(英文讲义)Lec10 QUANTIZING GENERAL SYMBOLS.pdf
- 《半经典微局部分析 Semiclassical Microlocal Analysis》课程教学资源(英文讲义)PSet3 SEMICLASSICAL MICROLOCAL ANALYSIS.pdf
