山东大学:《物理化学》课程教学资源(讲义资料)7.4 Activity coefficient-for students

87.4 Activity and activity coefficient Out-class extensive reading ra n. Levine, pp 294-300 Section 10.6 solutions of electrolytes Section 10. 7 determination of electrolyte activity coefficients
§7.4 Activity and activity coefficient Out-class extensive reading: Ira N. Levine, pp. 294-300 Section 10.6 solutions of electrolytes Section 10.7 determination of electrolyte activity coefficients

87.4 Activity and activity coefficient Some facts of strong electrolytes solution present species 0.52 mol- 3KCI 95%K++5%KCl 0. 25 mol,SO4 76% Na*+ 24%NaSO4 0.1 mol dm-3 CuSo 44% CuSO Effective concentration is rather different from the actual concentration Activity coefficient is essential for quite dilute solutions
solution present species 0.52 mol·dm-3 KCl 95% K+ + 5% KCl 0.25 mol·dm-3 Na2SO4 76 % Na+ + 24% NaSO4 ¯ 0.1 mol·dm-3 CuSO4 44% CuSO4 Some facts of strong electrolytes Effective concentration is rather different from the actual concentration Activity coefficient is essential for quite dilute solutions §7.4 Activity and activity coefficient

87.4 Activity and activity coefficient 1. Concepts For ideal or dilute non-electrolyte solution AB=uR(T)+RTIn m For nonideal solution of non-electrolytes uB=UR(T)+RtIn a Bm aB,m rBh e For electrolytic solution such as dilute Hcl solution HCI(aHci=h(au+)+cl(a) y+ a=y-6
For ideal or dilute non-electrolyte solution B B B ( ) ln m T RT m = + For nonideal solution of non-electrolytes B B B,m = + ( ) ln T RT a B B,m B,m m a m = 1. Concepts For electrolytic solution such as dilute HCl solution: HCl H Cl HCl( ) H ( ) Cl ( ) a a a + − + − = + m a m + + + = m a m − − − = §7.4 Activity and activity coefficient

87.4 Activity and activity coefficient 1. Concepts H=uH(T)+RTinayt Hcr=f- (t)+rTinaci HCI HCI CI=FHCI+RT in(qH.ac) WHCI=AHCI (T)+rT In aHcI Therefore: a Because solution only containing single ion does not exist, the activity of individual ion is unmeasurable, therefore, we use mean activity instead mean activity a=a,a=at a,Va=(a,a)
HCl HCl HCl = + ( ) ln T RT a Therefore: HCl H Cl a a a = + − Because solution only containing single ion does not exist, the activity of individual ion is unmeasurable, therefore, we use mean activity instead. mean activity 2 + − = a = a a a 2 1 ( ) a = a = a+ a− H H H + + + = + ( ) ln T RT a Cl Cl Cl − − − = + ( ) ln T RT a HCl H Cl = ++ − HCl H Cl = ++ − HCl HCl H Cl = + RT a a ln( ) + − 1. Concepts §7.4 Activity and activity coefficient

87.4 Activity and activity coefficient 1. Concepts For a salt with general formula Mu x M X vM+yX 1=V+H4+v 4=+ rTIn a4=12+ RTIn ym=4°+RTna=°+ RTIn y-m u=(vux+vu+RTInyr'+rtInm m Definition: b+=y+ m*=mm-Iv=v++v u=(vur+v_u)+vRTIn++vRTInm Molality-scale mean ionic activity coefficient C. Levine pp 295-297
For a salt with general formula Mv+Xv- = + + + − − v v RT a RT m ln ln + + + + + + = + = + RT a RT m ln ln − − − − − − = + = + ( ) ln ln v v v v v v RT RT m m + − + − = + + + + + − − + − + − Definition: + − = + − v v v + − = + − v v v m m m = + + − v v v = + + + ( ) ln ln v v vRT vRT m + + − − Cf. Levine pp. 295-297 Molality-scale mean ionic activity coefficient 1. Concepts §7.4 Activity and activity coefficient

87.4 Activity and activity coefficient 1. Concepts MX二vM+X m =v m mn三vm m+=m+mm,=(v+v)m mean ionic molality ri=r+r-n=(r+r) mean ionic activity coefficient a=(ata mean ionic activity y Mean ionic molality can be expressed in term of the molality of the solution, mean ionic activity coefficient can be measured experimentally, and then mean ionic activity can be determined
m+ = v+ m m− = v− m m v v v m v v 1 ( ) + − = + − v v v 1 ( ) + − = + − mean ionic molality mean ionic activity coefficient + − = = + − a a a m v v v 1 ( ) mean ionic activity Mean ionic molality can be expressed in term of the molality of the solution, mean ionic activity coefficient can be measured experimentally, and then mean ionic activity can be determined. v a = a 1. Concepts §7.4 Activity and activity coefficient + − = + − v v v m m m + − = + − v v v

8 7.4 Activity and activity coefficient 3. Influential factors 1)Concentration-dependence Discussion HCI 1.0 Nacl 0.8 0.6 Mg(NO3 )2 0.4 0.2 ZnsO4 00.10.20.30.40.50.6 m/ mol kg-I
3. Influential factors 1) Concentration-dependence Discussion: 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.2 0.4 0.6 0.8 1.0 HCl NaCl Mg(NO3 ) 2 m / mol·kg-1 ZnSO4 §7.4 Activity and activity coefficient

8 7.4 Activity and activity coefficient 3. Influential factors activity coefficient of LiBr in water 30 at 25oC and 1 atm 2.5 0.001 0.965 20 0.01 0.905 0.1 0.797 15 0.5 0.754 0.803 10 5 2.70 10 20.0 0.5 20 486 了 Levine p.299
Activity coefficient of LiBr in water at 25 oC and 1 atm m 0.001 0.965 0.01 0.905 0.1 0.797 0.5 0.754 1 0.803 5 2.70 10 20.0 20 486 Cf. Levine p.299 3. Influential factors §7.4 Activity and activity coefficient

87.4 Activity and activity coefficient 3. Influential factors 2)temperature Table Dependence of yi on temperature for 1: 1 type electrolytes T/°C 10 20 5 KCI 0.768 0.769 0.770 0.769 KOH 0.795 0.798 0.798 0.798 Naoh 0.767 0.768 0.766 0.766
2) temperature T/℃ 0 10 20 25 KCl 0.768 0.769 0.770 0.769 KOH 0.795 0.798 0.798 0.798 NaOH 0.767 0.768 0.766 0.766 Table Dependence of ± on temperature for 1:1 type electrolytes 3. Influential factors §7.4 Activity and activity coefficient

8 7.4 Activity and activity coefficient 3. Influential factors 4)ionic strength 3)Valence types and concentration In 1921. Lewis. who noted that the type electrolyte 0.1 m 0.2 m 1.0 m nonideality observed in electrolytic RbNO3 0.734 0.658 0.430 solutions primarily stems from the total NHCIO 0.7300.6600.482 concentration of charges present rather than from the chemical nature of the Bacl2 0.50804500.401 Individual ionic species, Introduced 1:2 CaCI 0.510 0.457 0.419 ionic strength 0.3140.2740.342 1:3 FeCl30.3250.2800.270 4z8 ar
3) Valence types and concentration 3. Influential factors = i mi Zi I 2 2 1 type electrolyte 0.1 m 0.2 m 1.0 m 1:1 RbNO3 0.734 0.658 0.430 NH4ClO4 0.730 0.660 0.482 1:2 BaCl2 0.508 0.450 0.401 CaCl2 0.510 0.457 0.419 1:3 LaCl3 0.314 0.274 0.342 FeCl3 0.325 0.280 0.270 In 1921, Lewis, who noted that the nonideality observed in electrolytic solutions primarily stems from the total concentration of charges present rather than from the chemical nature of the individual ionic species, introduced ionic strength. 4) ionic strength §7.4 Activity and activity coefficient 2 0 1 2 4 r q q F r =
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 山东大学:《物理化学》课程教学资源(讲义资料)2020 Group work-3.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)7.6 Reversialbe cell-for students.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)7.5 Theories for strong electrolyte.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)7.8 Electrode potential-for students.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)7.7 Electromotive force-for students.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)2020-Homework-5.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)Chapter 7 Electrochemistry §7.9 Electrode potential and electromotive forces.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)7.8 Electrode potential-for students.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)7.10 Application of EMF -for students.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)7.11 Irreversible electrode-for students.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)甲醇燃料电池介绍和一种新型柔性甲醇燃料电池简介.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)细胞膜上钾离子的电化学监测 Electrochemical monitoring K penetration through cell membrane.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)常温下电化学合成氨.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)二氧化碳电催化还原.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)the progress of lithium metallurgy.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)I2 /I-体系湿法冶金.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)8.4 adsorption at gas / solid interface.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)8.1 Surface tension.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)化学学科思维概述.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)7.12-14 Applied Electrochemistry-for students.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)7.5 Theories for strong electrolyte.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)Homework-4.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)7.2 Conductivity and its application.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)7.3 Application of Conductivity- for students.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)2020 Homework-5.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)7.1 Electrolyte and electrolytic solution.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)7.2 Conductivity and its application.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)7.1 Electrolyte and electrolytic solution.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)2020-10-22 course design.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)Osmotic pressure and chemical equilibrium.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)10.7 Methods for Studying fast reactions.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)2020 First Quater for Kinetics-small-with answer.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)2020 First Quater for Kinetics-small.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)10.6 Photochemical reaction-2.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)10.8 Kinetics of reactions in solution.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)10.5 Catalytic reactions Catalyzed reactions.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)10.6 Photochemical reaction-12-for students.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)10.3 Chain reaction.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)10.5 Catalytic reactions.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)2020 大学化学-催化剂相关概念的辨析.pdf