山东大学:《物理化学》课程教学资源(讲义资料)7.1 Electrolyte and electrolytic solution

8 7. 1 Electrolyte and electrolytic solution Out-class reading Levine, pp. 294-310 Section 10.6 solutions of electrolytes Section 10.9 ionic association pp512515 Section 16.6 electrical conductivity of electrolyte solutions
§7.1 Electrolyte and electrolytic solution Out-class reading: Levine, pp. 294-310 Section 10.6 solutions of electrolytes Section 10.9 ionic association pp. 512-515 Section 16.6 electrical conductivity of electrolyte solutions

87.1 Electrolyte and electrolytic solution 5. Conducting mechanism of electrolyte Motion of ions in the solution: 1)diffusion: due to difference in concentration Electric transfer of ion in solution 2)convection: due to the difference in density under electric field 3)transfer/migration: due to the effect of How can current cross the electrode electric field solution interface
•Electric transfer of ion in solution under electric field + + + + + + + + − + Motion of ions in the solution: 1) diffusion: due to difference in concentration 2) convection: due to the difference in density 3) transfer/migration: due to the effect of How can current cross the electrode / electric field solution interface ? I E 5. Conducting mechanism of electrolyte §7.1 Electrolyte and electrolytic solution

87.1 Electrolyte and electrolytic solution CI At anode: At cathode 2CI→Cl2+2e-↑ 2H++2e→H2个 Conducting mechanism: 1) Transfer of ion in solution under electric field 2)electrochemical reaction at electrode/solution interface
Cl− e − e − e − At cathode: 2H+ + 2e− → H2 Cl− Cl− Cl− Cl− Cl− Cl− Cl− H+ e − H+ e − H+ e − H+ H+ H+ H+ H+ H+ Cl− At anode: 2Cl− → Cl2 + 2e− H+ Cl− Conducting mechanism: 1) Transfer of ion in solution under electric field; 2) electrochemical reaction at electrode/solution interface. §7.1 Electrolyte and electrolytic solution

87.1 Electrolyte and electrolytic solution 6. Law of electrolysis For quantitative electrolysis Number 110 2sM Faraday’sLaw where m is the mass of liberated matter; Q the electric coulomb, z the number of electron gained/lost during reactions, F a proportional factor named as Faraday constant, M the molar weight of the matter Faraday 's constant FARADAY DICCTISSION F=(16021917×1019×6022169×1023)Cmol-l= Micheal Faraday 96486. C mol- usually round off as 96500 C. mol-,is Great Britain 1791-1867 the charge carried by l mole of electron Invent the electric motor and generator and the principles of electrolysis
6. Law of electrolysis where m is the mass of liberated matter; Q the electric coulomb, z the number of electron gained/lost during reactions, F a proportional factor named as Faraday constant, M the molar weight of the matter. M zF Q m = For quantitative electrolysis: Micheal Faraday Great Britain 1791-1867 Invent the electric motor and generator, and the principles of electrolysis. Faraday’s Law Faraday’s constant F = (1.6021917 10-19 6.022169 1023 ) C·mol-1 = 96486.69 C·mol-1 usually round off as 96500 C·mol-1 , is the charge carried by 1 mole of electron. §7.1 Electrolyte and electrolytic solution

87.1 Electrolyte and electrolytic solution Current efficiency (n) Application of faraday's law 1)Definition of ampere: Q theoretical 77 effective 7 IUPAC. constant current that would effective theoretical deposit 0.0011180 g of silver per second from AgNO3 solution in one second: 1 Current efficiency is lower than 100% ampere due to side-reactions. For example, 2) Coulometer: copper /silver/gas(H2, 02) evolution of hydrogen occur during coulometer electro-deposition of copper 3)Electrolytic analysis -electroanalysis O← 4)Electrochemical capacitance
Current efficiency () effective theoretical Q Q = theoretical effective m m = Current efficiency is lower than 100% due to side-reactions. For example, evolution of hydrogen occur during electro-deposition of copper. 1) Definition of ampere: IUPAC: constant current that would deposit 0.0011180 g of silver per second from AgNO3 solution in one second: 1 ampere. Application of Faraday’s law 2) Coulometer: copper / silver / gas (H2 , O2 ) coulometer 3) Electrolytic analysis – electroanalysis Q ↔m ↔ n ↔ c §7.1 Electrolyte and electrolytic solution 4) Electrochemical capacitance

87.1 Electrolyte and electrolytic solution 7. Transfer of ion under electric field measure ionic mobility using moving boundary method How do we describe the motion of ions under electric field? MA. MA have an ion in common 1)Ionic mobility Rate of electric transfer: lonic velocity The boundary, rather different in color, BHB refractivity, etc. IS sharp de E V∝ A日A Ionic mobility(0): the ionic velocity CdcI per unit electric field, is a constant Cd tE
7. Transfer of ion under electric field 1) Ionic mobility d d E l d d E U l = Ionic mobility (U) : the ionic velocity per unit electric field, is a constant. Rate of electric transfer: Ionic velocity How do we describe the motion of ions under electric field? measure ionic mobility using moving boundary method MA, MA’ have an ion in common. The boundary, rather different in color, refractivity, etc. is sharp. x v t = v x U V tE l = = §7.1 Electrolyte and electrolytic solution

87.1 Electrolyte and electrolytic solution 8. Transference number Transference number(transfer/ transport number ), is the fraction of the current transported by an ion plane a Q=2++e O Q t+t=?
I = I+ + I- Q = Q+ + Q- j j j I Q t I Q = = t+ + t - = ? 8. Transference number Transference number (transfer/ transport number), is the fraction of the current transported by an ion. plane A I- I+ I + + + I Q t I Q = = - - - I Q t I Q = = §7.1 Electrolyte and electrolytic solution

87.1 Electrolyte and electrolytic solution 8. Transference number (1) Principle for measuring transference number C A B For time t: 0+ =AU+tC+Z+ F O=AUtC_Z_F Owing to electric migration, on the left side of plane a, there are more anions, while on the right side, more cations. Is this real?
For time t: Q+ = A U+ t c+ Z+ F Q − = A U− t c−Z−F (1) Principle for measuring transference number Owing to electric migration, on the left side of plane A, there are more anions, while on the right side, more cations. Is this real? A I+ C B U t − 8. Transference number §7.1 Electrolyte and electrolytic solution

87.1 Electrolyte and electrolytic solution 8. Transference number (1) Principle of Hittorf method(1853) Example: Electrolysis of HCl ⊙④ SolutIon IF anodic region bulk solution cathodic region When 4 Faraday pass through the electrolytic cell 4CI-4e→ 3 mol H 3 mole 4I++4e 2C2个 I mol cl 2H final result For anodic region: residual reacted t C transfered anodic region bulk solution cathodic region
(1) Principle of Hittorf method (1853) Example: Electrolysis of HCl solution When 4 Faraday pass through the electrolytic cell anodic region bulk solution cathodic region + + + + + + + + + + + + + + + + + + − − − − − − − − − − − − − − − − − − + = 1 F + + + + + + + + + + + + + + + + + + − − − − − − − − − − − − − − − − − − 4Cl- -4e- → 2Cl2 4H+ +4e- → 2H2 3 mol H+→ 1 mol Cl- 3 mol H+→ 1 mol Cl- 8. Transference number anodic region bulk solution cathodic region + + + + + + + + + + + + + + − − − − − − − − − − − − − − final result For anodic region: residual initial reacted transfered c = c −c + c §7.1 Electrolyte and electrolytic solution

87.1 Electrolyte and electrolytic solution 8. Transference number EXAMPLE ④oo-lt Pt electrode FeCl solution 动( ock stopper In cathode compartment Initial: FeCl3 4.00 mol- dm Final FeCh, 3. 150 mol dm. FeCl,1.000 mol- dm Calculate the transference number of Fe3+ What factors will affect the accuracy of the Anode Cathode chamber chamber measurement? Hittorf's transference cell
EXAMPLE Pt electrode, FeCl3 solution: In cathode compartment: Initial: FeCl3 4.00 mol·dm-3 Final: FeCl3 3.150 mol·dm-3 FeCl2 1.000 mol·dm-3 Calculate the transference number of Fe3+ Hittorf’s transference cell Anode chamber Cathode chamber Cock stopper What factors will affect the accuracy of the measurement? 8. Transference number §7.1 Electrolyte and electrolytic solution
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 山东大学:《物理化学》课程教学资源(讲义资料)2020 Homework-5.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)7.3 Application of Conductivity- for students.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)7.2 Conductivity and its application.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)Homework-4.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)7.5 Theories for strong electrolyte.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)7.4 Activity coefficient-for students.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)2020 Group work-3.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)7.6 Reversialbe cell-for students.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)7.5 Theories for strong electrolyte.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)7.8 Electrode potential-for students.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)7.7 Electromotive force-for students.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)2020-Homework-5.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)Chapter 7 Electrochemistry §7.9 Electrode potential and electromotive forces.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)7.8 Electrode potential-for students.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)7.10 Application of EMF -for students.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)7.11 Irreversible electrode-for students.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)甲醇燃料电池介绍和一种新型柔性甲醇燃料电池简介.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)细胞膜上钾离子的电化学监测 Electrochemical monitoring K penetration through cell membrane.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)常温下电化学合成氨.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)二氧化碳电催化还原.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)7.2 Conductivity and its application.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)7.1 Electrolyte and electrolytic solution.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)2020-10-22 course design.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)Osmotic pressure and chemical equilibrium.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)10.7 Methods for Studying fast reactions.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)2020 First Quater for Kinetics-small-with answer.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)2020 First Quater for Kinetics-small.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)10.6 Photochemical reaction-2.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)10.8 Kinetics of reactions in solution.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)10.5 Catalytic reactions Catalyzed reactions.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)10.6 Photochemical reaction-12-for students.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)10.3 Chain reaction.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)10.5 Catalytic reactions.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)2020 大学化学-催化剂相关概念的辨析.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)10.2 Approximate treatment of rate equation and mechanism assumption.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)2014 大学化学-NO 氧化反应速率常数与温度负相关原因的讨论.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)2020 大学化学-平衡近似和稳态近似使用条件浅析.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)10.1 Typical complex reactions.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)2020 Physical Chemistry 2 rationale.pdf
- 山东大学:《物理化学》课程教学资源(讲义资料)9.1 Introduction of kinetics.pdf