中国高校课件下载中心 》 教学资源 》 大学文库

气体吸收——相际扩散与传质原理(双语版)_第8章 气体吸收 §8.3扩散和单相传质

文档信息
资源类别:文库
文档格式:PPT
文档页数:31
文件大小:624.5KB
团购合买:点击进入团购
内容简介
气体吸收——相际扩散与传质原理(双语版)_第8章 气体吸收 §8.3扩散和单相传质
刷新页面文档预览

s8.3 Diffusion and mass transfer , o/(扩散和单 within single phase 向传质) 8.3.1 Molecular diffusion in binary mixtures Diffusion (P Features a hatsdiffusioni3 Diffusion is the movement, under the infiuence of a physical stimulus(物理驱动)oam individual component(单独的组份 through a mixture

一.Diffusion(P511) Features: 1. ~ What’s diffusion ? Diffusion is the movement, under the influence of a physical stimulus(物理驱动), of an individual component(单独的组份) through a mixture. 8.3.1 Molecular diffusion in binary mixtures (扩散和单 向传质) §8.3 Diffusion and mass transfer within single phase

s8.3 Diffusion and mass transfer , o/(扩散和单 within single phase 向传质) 8.3.1 Molecular diffusion in binary mixtures Diffusion (pu 2 Why reason? The most cause of diffusion is a concentration gradient of the diffusing component. 3. Purpose? A concentration gradient(浓度梯度) tends to move the component in such a direction as to equalize concentration and destroy the gradient

一.Diffusion(P511) 2. ~ Why reason? The most cause of diffusion is a concentration gradient of the diffusing component. 3. ~ Purpose? A concentration gradient(浓度梯度) tends to move the component in such a direction as to equalize concentration and destroy the gradient. 8.3.1 Molecular diffusion in binary mixtures (扩散和单 向传质) §8.3 Diffusion and mass transfer within single phase

8.3.1 Molecular diffusion in binary mixtures Diffusion (Pai) 4 ≈ Steady- state flux When the gradient is maintained by constantly supplying the diffusing component to the high- concentration end of the gradient and removing it at the low-concentration end. there is a steady-state flux of the diffusing component This is characteristic of many mass-transfer operations

一.Diffusion(P511) 4. ~ Steady-state flux When the gradient is maintained by constantly supplying the diffusing component to the high￾concentration end of the gradient and removing it at the low-concentration end, there is a steady-state flux of the diffusing component. This is characteristic of many mass-transfer operations. 8.3.1 Molecular diffusion in binary mixtures

83.I Molecular diffusion in binary mixtures 5 Although the usual cause of diffusion is a concentration gradient, diffusion can also be aals ed by an activity gradient(能动梯度) as in reverse osmosis(反渗透),bya pressure gradient, by a temperature gradient, or by the application of an external force field (外场力), as in a centrifuge(离心力场)

5. ~ Other reasons Although the usual cause of diffusion is a concentration gradient, diffusion can also be caused by an activity gradient(能动梯度), as in reverse osmosis(反渗透), by a pressure gradient, by a temperature gradient, or by the application of an external force field (外场力), as in a centrifuge(离心力场). 8.3.1 Molecular diffusion in binary mixtures

8.3.1 Molecular diffusion in binary mixtures 6.< What's thermal diffusion?热扩散 Molecular diffusion induced by temperature gradient is thermal diffusion. 7。 What's the force diffusion?强制扩散 Molecular diffusion induced by the application of a force from an external filed is forced diffusion

6. What’s thermal diffusion?热扩散 Molecular diffusion induced by temperature gradient is thermal diffusion. 7. What’s the force diffusion? 强制扩散 Molecular diffusion induced by the application of a force from an external filed is forced diffusion. 8.3.1 Molecular diffusion in binary mixtures

8.3.1 Molecular diffusion in binary mixtures 8< Diffusion in a direction扩散方向 Diffusion in a direction is perpendicular to the interface between the phases and at a definite location in the equipment 9 Steady state Steady state is assumed, and the concentrations at any point do not change with time

8. Diffusion in a direction 扩散方向 Diffusion in a direction is perpendicular to the interface between the phases and at a definite location in the equipment. 9. Steady state Steady state is assumed, and the concentrations at any point do not change with time. 8.3.1 Molecular diffusion in binary mixtures

c8.3. 1 Molecular diffusion in binary mixtures Fick's first law of diffusion for a binary mixture (P51)(双组份扩散时的费克第一定律) 1 What's Fick's first law ∵分子扩散的实质是分子的微观随机运动。 对于一定温度和压力下的一维定态扩散,其统计 规律可用宏观的方式表达。这就是费克定律: d =-D △B (8-9) Where: Ja the diffusion flux of component A IA moles/per unit area per unit time IA moles/ms

二. Fick’s first law of diffusion for a binary mixture (P514)(双组份扩散时的费克第一定律) 1. What’s Fick’s first law ? ∵分子扩散的实质是分子的微观随机运动。 ∴对于一定温度和压力下的一维定态扩散,其统计 规律可用宏观的方式表达。这就是费克定律: Where: JA= the diffusion flux of component A; [A moles/per unit area per unit time] ~ [A moles/m2·s] 8.3.1 Molecular diffusion in binary mixtures ( ) A A AB dC = - 8 - 9 J D dZ

8.3.1 Molecular diffusion in binary mixtures dca/dF the concentration gradient of component a diffusing in a direction, [(mol/m )/ml DAR=Diffusivity of component A in component B, m/s I Reference to(8-9), a similar equation for component B: do JB- DBa dz B(8-1) For binary mixture DAB=DBA-D Then J=-J B (8-13)

dCA/dz= the concentration gradient of component A diffusing in a direction, [(mol/m3 )/m] DAB=Diffusivity of component A in component B,[m2 /s ] Reference to(8-9), a similar equation for component B: ∵ For binary mixture DAB=DBA=D Then JA=-JB (8-13) 8.3.1 Molecular diffusion in binary mixtures ( ) B B BA dC = - 8 -11 dZ J D

8.3.1 Molecular diffusion in binary mixtures 2.“现象定律 That's phenomena law. 上学期已经学过两个基本定律: 牛顿粘性定律: 气 Newton's la aw ot viscos Molecular momentum transport 傅立叶定律:a cFourier's law of heat conduction c Molecular energy transport Comparison to those three formulas ()传递的物理量:动量,热量,质量 momentum, energy, and mass

2. “现象定律” ~ That’s phenomena law. 上学期已经学过两个基本定律: 牛顿粘性定律: ~Newton’s law of viscosity ~ Molecular momentum transport 傅立叶定律: ~Fourier’s law of heat conduction ~ Molecular energy transport Comparison to those three formulas: ⑴ 传递的物理量:动量,热量,质量 ~momentum, energy, and mass 8.3.1 Molecular diffusion in binary mixtures du τ μ =- dy dt q = k - dy

18.3.1 Molecular diffusion in binary mixtures (2)均为传递通量:(传递的物理量)/m2s 大小( Magnitudes):与对应强度因素梯度成正比。 方向( Directions):沿着浓度减小的方向传递。 (3)各式中的系数仅为状态函数,即是TP和组成的函 数,而于流动无关。 又统一称这三个定律为 “现象定律”~That' s phenomena law 大家在学习质量传递时,完全可以与前面所学过的动 量、热量传递进行类比

⑵ 均为传递通量:(传递的物理量)/m2·s 大小 (Magnitudes) : 与对应强度因素梯 度成正比。 方向(Directions) : 沿着浓度减小的方向传递。 ⑶ 各式中的系数仅为状态函数,即是T,P和组成的函 数,而于流动无关。 ∴又统一称这三个定律为 “现象定律” ~ That’s phenomena law. ∴大家在学习质量传递时,完全可以与前面所学过的动 量、热量传递进行类比。 8.3.1 Molecular diffusion in binary mixtures

刷新页面下载完整文档
VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
相关文档