香港中文大学:Image processing and computer vision(PPT课件讲稿)Edge detection and image filtering

Chapter 3: Image processing and computer vision Edge detection and image filtering by prof K H Wong Computer Science and engineering dept. CUHK khong@cse cuhk. edu. hk Tutorial for CMSC5711: Edge vo. 1a
Chapter 3: Image processing and computer vision Edge detection and image filtering by Prof. K.H. Wong, Computer Science and Engineering Dept. CUHK khwong@cse.cuhk.edu.hk Tutorial for CMSC5711 : Edge v0.1a 1

ear Introduction Edge detection by differentiation and threshold Convolution math tool Edge mask: edge detection by convolution(e.g Sobel) Image Filtering: smoothing, high pass etc Laplacian method 2nd order derivative method Laplacian of Gaussian: LOG smoothing and edge detection together Canny Edge Detection Most popular method Tutorial for CMSC5711: Edge vo. 1a
You will learn • Introduction: Edge detection by differentiation and threshold • Convolution math tool • Edge mask : edge detection by convolution (e.g. Sobel) • Image Filtering: smoothing, high pass etc. • Laplacian method : 2nd order derivative method. • Laplacian of Gaussian :LOG smoothing and edge detection together • Canny Edge Detection: Most popular method Tutorial for CMSC5711 : Edge v0.1a 2

opICS Edge detection First order derivative g(0 Second order derivative v2l a gray level image I has many sharp edges Tutorial for CMSC5711: Edge vo. 1a
Topics • Edge detection • First order derivative G(I) • Second order derivative 2 I A gray level image I has many sharp edges Tutorial for CMSC5711 : Edge v0.1a 3

What are edges and why we need them? Features have many applications: recognition tracking etc The most common are Point edges Shape intensity change positions Boundary edges Shape intensity changing lines Tutorial for CMSC5711: Edge vo. 1a
What are edges and why we need them? • Features have many applications: recognition, tracking etc. • The most common are • Point edges • Shape intensity change positions • Boundary edges • Shape intensity changing lines Tutorial for CMSC5711 : Edge v0.1a 4

Sobel demo D⊥addn33fns http://www.youtube.com/watch?v=z_a6e30a0xo Tutorial for CMSC5711: Edge vo. 1a 5
Sobel Demo • http://www.youtube.com/watch?v=z_a6e30aOXo Tutorial for CMSC5711 : Edge v0.1a 5

Face edges ·Demo http://www.youtube.com/watch?v=cdile-53a0w Tutorial for CMSC5711: Edge vo. 1a 6
Face edges • Demo http://www.youtube.com/watch?v=CDlLe-53a0w Tutorial for CMSC5711 : Edge v0.1a 6

Application of edges .l ane detection http://www.youtube.com/watch?v=al4dnnkzuea&feature=related http://www.youtube.com/watch?v=9f3_6xl8hey&feature=related Tutorial for CMSC5711: Edge vo. 1a
Application of edges • Lane detection http://www.youtube.com/watch?v=Al4DnNkZUeA&feature=related http://www.youtube.com/watch?v=9F3_6xL8hEY&feature=related Tutorial for CMSC5711 : Edge v0.1a 7

How to obtained edges? I(xy+1)I(x+12y+1) (x,y)I(x+1,y) Use gradient G of intensity [ (x, y)] change, two methods First order gradient 1(x,y) is an edge if X (((x,y)≈ al(x,y) a(x,y)|≥ Threshold Second order gradient(Laplacian operator I(x,y is an edge if a/(x,y),a/(x,y) x,) Tutorial for CMSC5711: Edge vo. 1a
How to obtained edges? • Use gradient G of intensity [I(x,y)] change, two methods • First order gradient • I(x,y) is an edge if • Second order gradient (Laplacian operator) • I(x,y) is an edge if Threshold y I x y x I x y G I x y + 2 2 ( , ) ( , ) ( ( , )) 0 ( , ) ( , ) ( , ) 2 2 2 2 2 = + = y I x y x I x y I x y x y I(x,y) I(x,y+1) I(x+1,y+1) I(x,y) I(x+1,y) Tutorial for CMSC5711 : Edge v0.1a 8

Edge detection using First order gradient G > threshold Edges are at positions of rapid change of intensity levels If ( intensity gradient G((x, y))> threshold ((x,y)≈ aI(x,y), al(x ≥ Threshold ax pixel(x, y) is an edge point First order derivative GI(x,y)=> threshold is an edge Tutorial for CMSC5711: Edge vo. 1a
Edge detection using First order gradient G > threshold • Edges are at positions of rapid change of intensity levels • If (intensity gradient G(I(x,y))> threshold) • { • pixel(x,y) is an edge point; • } Threshold x I x y x I x y G I x y + 2 2 ( , ) ( , ) ( ( , )) First order derivative I(x,y) G[I(x,y)]=> threshold is an edge Tutorial for CMSC5711 : Edge v0.1a 9

Edge detection using second order gradient V2=0 Edges are at v2i=0 02I(x,y)01(x,y)=0 If intensity gradient V21=0) pixel(x, y) is an edge point ∧I(X,y -7+GI(X)=> threshold is an edge First order derivative (gradient of I(x,y)). VZI(X, y)=0 is an edge Second order derivative (gradient of gradient-Of > I(x,y) Tutorial for CMSC5711: Edge vo. 1a 10
Edge detection using second order gradient 2 I=0 • Edges are at 2 I =0 • If (intensity gradient 2 I =0) • { • pixel(x,y) is an edge point; • } 0 ( , ) ( , ) ( , ) 2 2 2 2 2 = + = x I x y x I x y I x y I(x,y) G[I(x,y)]=> threshold is an edge 2 I(x,y)= 0 is an edge First order derivative (gradient of I(x,y)) Second order derivative (gradient of gradient of I(x,y)) x I(x,y) x x Tutorial for CMSC5711 : Edge v0.1a 10
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《图像处理与计算机视觉 Image Processing and Computer Vision》课程教学资源(PPT课件讲稿)Chapter 05 Hough transform.pptx
- GD-Aggregate:A WAN Virtual Topology Building Tool for Hard Real-Time and Embedded Applications.ppt
- Introduction to Internet and TCPIP(PPT讲稿)IP转发 IP FORWARDING.pptx
- 《图像处理与计算机视觉 Image Processing and Computer Vision》课程教学资源(PPT课件讲稿)Chapter 10 Pose estimation by the iterative method.pptx
- 《操作系统》课程教学资源(PPT课件讲稿)Chapter 8 Virtual Memory.ppt
- 《操作系统》课程教学资源(PPT课件讲稿)Chapter 6 Concurrency Deadlock and Starvation.ppt
- 《操作系统》课程教学资源(PPT课件讲稿)Chapter 1 and 2 Computer System and Operating System Overview.ppt
- 印第安纳大学:《Informatics》课程PPT教学课件(信息学)08 网络爬虫 Web Crawling.ppt
- 《Java编程导论》课程教学资源(PPT课件讲稿)Chapter 8 Strings and Text I/O.ppt
- 《计算机网络与通讯》课程教学资源(PPT课件讲稿,英文版)Chapter 3 Transport Layer.ppt
- C++ Review.ppt
- 《计算机网络与通讯》课程教学资源(PPT课件讲稿,英文版)Chapter 07 Network Security.ppt
- Incorporating Structured World Knowledge into Unstructured Documents via——Heterogeneous Information Networks.pptx
- FairCloud:Sharing the Network in Cloud Computing.pptx
- 香港科技大学:《计算机网络 Computer Networks》课程教学资源(PPT课件)Chapter 1 Introduction of computer networking.ppsx
- Fluent:《GAMBIT建模教程》教学资源(PPT讲稿)Geometry Operations in GAMBIT.ppt
- 有限元分析 ANSYS:Modeling Turbulent Flows(PPT讲稿)Introductory FLUENT Training.ppt
- 隐马尔科夫模型和词性标注(PPT课件讲稿).ppt
- 哈尔滨工业大学:《中文信息处理》课程教学资源(PPT课件讲稿)句法分析(张宇).ppt
- 新乡学院:《计算机网络》课程教学大纲(适用专业:信息与计算科学).pdf
- 《图像处理与计算机视觉 Image Processing and Computer Vision》课程教学资源(PPT课件讲稿)Chapter 07 Mean-shift and Cam-shift.pptx
- Essential Cluster OS Commands.ppt
- 香港浸会大学:Kickstart Tutorial/Seminar on using the 64-nodes P4-Xeon Cluster in Science Faculty.ppt
- 香港浸会大学:并行输入输出(PPT讲稿)Parallel I/O.ppt
- 四川大学:《操作系统 Operating System》课程教学资源(PPT课件讲稿)Chapter 7 Memory Management.ppt
- 四川大学:《数据库技术》课程教学资源(PPT课件讲稿)第4章 数据库查询.ppt
- 《计算机系统结构》课程教学资源(PPT课件讲稿)第五章 存储层次.ppt
- 软件配置管理和项目管理工具(PPT讲稿)Software Configuration Management and Project Management Tool.ppt
- 《数据库基础》课程PPT教学课件(SQL Server)第4章 T-SQL与可编程对象.ppt
- 《嵌入式系统开发》课程PPT教学课件(讲稿)第一章 嵌入式系统概述.ppt
- 《编译原理 Compiler Construction》课程教学资源(PPT讲稿)语义分析 Semantic Analysis(Attributes and Attribute Grammars、Algorithms for Attribute Computation).ppt
- 四川大学:《Linux操作系统》课程教学资源(PPT课件讲稿)第6章 Linux系统调用.ppt
- 《数据库技术》课程教学资源(PPT课件讲稿)第3章 SQL语言基础及数据定义功能(主讲:曾晓东).ppt
- 四川大学:.NET and .NET Core:Languages, Cloud, Mobile and AI(PPT课件讲稿)NET for Data Science and AI.pptx
- 四川大学:《Matlab程序设计》课程教学资源(教学大纲)Programming in Matlab.pdf
- 电子科技大学:《计算系统与网络安全 Computer System and Network Security》课程教学资源(PPT课件讲稿)第4章 网络基础(网络概述、协议).ppt
- 电子科技大学:《计算系统与网络安全 Computer System and Network Security》课程教学资源(PPT课件讲稿)第7章 协议安全技术(安全协议实例).ppt
- 电子科技大学:《计算系统与网络安全 Computer System and Network Security》课程教学资源(PPT课件讲稿)第5章 网络隔离技术.ppt
- 电子科技大学:《计算系统与网络安全 Computer System and Network Security》课程教学资源(PPT课件讲稿)第2章 信息安全数学基础(计算复杂性).ppt
- 《计算机系统结构》课程教学资源(PPT课件讲稿)第五章 存储系统.ppt