《图像处理与计算机视觉 Image Processing and Computer Vision》课程教学资源(PPT课件讲稿)Chapter 07 Mean-shift and Cam-shift

Image processing and computer vision Chapter 7 Mean-shift and cam-shift Ref o[1 Dorin Comaniciu, Peter Meer, "Mean Shift: A Robust Approach Toward Feature Space Analysis"Volume 24, Issue 5(May 2002),IEEE Transactions on Pattern Analysis and Machine Intelligence o[2] web. missouri. edu/ hantx/ECE8001/notes/Lect7 mean shift. pdf Camshift v 0.a
Image processing and computer vision Chapter 7: Mean-shift and Cam-shift Ref ⚫[1] Dorin Comaniciu, Peter Meer,"Mean Shift: A Robust Approach Toward Feature Space Analysis"Volume 24 , Issue 5 (May 2002),IEEE Transactions on Pattern Analysis and Machine Intelligence ⚫[2] web.missouri.edu/~hantx/ECE8001/notes/Lect7_mean_shift.pdf Camshift v.0.a 1

INtroduction Kernel density I Kernel choices Peak finding I Mean-shift Cam-shift What is Mean-shift? Find the peak of a probability function by the change of the mean of the data Applications Non-rigid object tracking Segmentation Camshift v 0.a
Introduction | Kernel density | Kernel choices | Peak finding | Mean-shift | Cam-shift What is Mean-shift? • Find the peak of a probability function by the change of the mean of the data • Applications: – Non-rigid object tracking – Segmentation Camshift v.0.a 2

INtroduction Kernel density I Kernel choices Peak finding I Mean-shift Cam-shift Applications: segmentation of regions of images in a movie Use color to segment the image into logical regions for analysIS If the regions are moving mean-shift is useful Camshift v 0.a .https://www.youtube.com/watch?v=rdtun7a6h08
Introduction | Kernel density | Kernel choices | Peak finding | Mean-shift | Cam-shift Applications: segmentation of regions of images in a movie • Use color to segment the image into logical regions for analysis. • If the regions are moving , mean-shift is useful. Camshift v.0.a 3 •https://www.youtube.com/watch?v=rDTun7A6HO8

INtroduction Kernel density I Kernel choices Peak finding I Mean-shift Cam-shift Application: tracking non- rigid object Human tracking http://ww.youtubecom/watch?v=zltjpfpp9hy Camshift v.0.a
Introduction | Kernel density | Kernel choices | Peak finding | Mean-shift | Cam-shift Application: tracking non-rigid object • Human tracking Camshift v.0.a 4 http://www.youtube.com/watch?v=zLtjPfPP9HY

INtroduction Kernel density I Kernel choices Peak finding I Mean-shift Cam-shift Intuition: find the mode by mean shift Target: Find the modes (peaks in a set of sample data The mode of a continuous probability distribution is the peak There may be multiple peaks The method used is called mean-shift MIX By finding the shift of the mean, we can find the 8a s mode (peak) It can be used to segment an image into logical regions. e.g. within each region, the color is the same Camshift v 0.a 5
Introduction | Kernel density | Kernel choices | Peak finding | Mean-shift | Cam-shift Intuition: find the mode by mean-shift • Target : Find the modes (peaks) in a set of sample data. – The mode of a continuous probability distribution is the peak. – There may be multiple peaks. • The method used is called mean-shift. – By finding the shift of the mean, we can find the mode (peak) • It can be used to segment an image into logical regions. (e.g. within each region, the color is the same.) Camshift v.0.a 5

INtroduction Kernel density I Kernel choices Peak finding I Mean-shift Cam-shift First we need to understand the Probability density Function PDF We use Kernel density estimation to find PDF Obtain the probability function from samples Camshift v 0.a 6
Introduction | Kernel density | Kernel choices | Peak finding | Mean-shift | Cam-shift First we need to understand the Probability Density Function PDF We use Kernel density estimation to find PDF Obtain the probability function from samples Camshift v.0.a 6

Introduction (Kernel density Kernel choices I Peak finding I Mean-shift |Cam-shift Motivation for Kernel density estimation to find pdf The formula(parametric form) of the PDf (probability density function is difficult to find Use sampling method to estimate the p.D.f That means: Gaussian(a parametric form with mean, standard deviation etc. is easy to use) but it is too simple to model real life problems PDF(X N/iToo simple to model o onaL HR real life problems KN(x)=ceiiA X An irregular shape pdf, the distribution Gaussian distribution Is difficult to model using parameters camshift v .a --use non-parametric methods instead
Introduction | Kernel density | Kernel choices | Peak finding | Mean-shift | Cam-shift Motivation for Kernel density estimation to find PDF • The formula (parametric form) of the PDF (probability density function) is difficult to find. • Use sampling method to estimate the P.D.F. • That means: Gaussian ( a parametric form with mean , standard deviation etc., is easy to use), but it is too simple to model real life problems. 2 || || 2 1 ( ) x N K x c e − = Camshift v.0.a 7 Gaussian distribution An irregular shape PDF, the distribution Is difficult to model using parameters --use non-parametric methods instead PDF(x) 0 x Too simple to model real life problems

IntroductionKKernel density Kernel choices I Peak finding IMean-shiftICam-shift Example Outbreak of flu in a year How do you model this pdf? CUHK Clinic Patients Number 100+ Per day 3 9 12 month Camshift v 0.a 8
Introduction | Kernel density | Kernel choices | Peak finding | Mean-shift | Cam-shift Example • Outbreak of flu in a year • How do you model this PDF? Camshift v.0.a 8 month CUHK Clinic Patients Number Per day 3 6 9 12 100

Introduction KErnel density Kernel choices I Peak finding I Mean-shift I Cam-shift Kernel density estimation KDE Demo mei Density Estm Dataset 0waBa们a钟(动 https://courses.cs.ut.ee/demos/kernel-Density-estimation/ https:/en.wikipedia.org/wiki/kerneldensityestimation Camshift v 0.a 9
Introduction | Kernel density | Kernel choices | Peak finding | Mean-shift | Cam-shift Kernel density estimation KDE Demo • Camshift v.0.a 9 https://courses.cs.ut.ee/demos/kernel-density-estimation/ https://en.wikipedia.org/wiki/Kernel_density_estimation

Introduction KErnel density Kernel choices I Peak finding I Mean-shift I Cam-shift kernel density distribution function K is a function To be explained(see slide 19) The general form of a kernel x-xi density distribution function x)=∑k The Kernel (k) has many n=number of samples choices h= window radius Epanechnikov d= dimension Uniform get position Normal ( gaussian) x= samples C= normalization constant Camshift v 0.a
Introduction | Kernel density | Kernel choices | Peak finding | Mean-shift | Cam-shift kernel density distribution function • The general form of a kernel density distribution function • The Kernel (K) has many choices – Epanechnikov – Uniform – Normal (Gaussian) C normalization constant samples target position dimension window radius number of samples ( ) ˆ 1 = = = = = = − = = i n i i h d x xd h n h x x K nhC f x Camshift v.0.a 10 K is a function: To be explained (see slide19)
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 香港中文大学:Image processing and computer vision(PPT课件讲稿)Edge detection and image filtering.pptx
- 《图像处理与计算机视觉 Image Processing and Computer Vision》课程教学资源(PPT课件讲稿)Chapter 05 Hough transform.pptx
- GD-Aggregate:A WAN Virtual Topology Building Tool for Hard Real-Time and Embedded Applications.ppt
- Introduction to Internet and TCPIP(PPT讲稿)IP转发 IP FORWARDING.pptx
- 《图像处理与计算机视觉 Image Processing and Computer Vision》课程教学资源(PPT课件讲稿)Chapter 10 Pose estimation by the iterative method.pptx
- 《操作系统》课程教学资源(PPT课件讲稿)Chapter 8 Virtual Memory.ppt
- 《操作系统》课程教学资源(PPT课件讲稿)Chapter 6 Concurrency Deadlock and Starvation.ppt
- 《操作系统》课程教学资源(PPT课件讲稿)Chapter 1 and 2 Computer System and Operating System Overview.ppt
- 印第安纳大学:《Informatics》课程PPT教学课件(信息学)08 网络爬虫 Web Crawling.ppt
- 《Java编程导论》课程教学资源(PPT课件讲稿)Chapter 8 Strings and Text I/O.ppt
- 《计算机网络与通讯》课程教学资源(PPT课件讲稿,英文版)Chapter 3 Transport Layer.ppt
- C++ Review.ppt
- 《计算机网络与通讯》课程教学资源(PPT课件讲稿,英文版)Chapter 07 Network Security.ppt
- Incorporating Structured World Knowledge into Unstructured Documents via——Heterogeneous Information Networks.pptx
- FairCloud:Sharing the Network in Cloud Computing.pptx
- 香港科技大学:《计算机网络 Computer Networks》课程教学资源(PPT课件)Chapter 1 Introduction of computer networking.ppsx
- Fluent:《GAMBIT建模教程》教学资源(PPT讲稿)Geometry Operations in GAMBIT.ppt
- 有限元分析 ANSYS:Modeling Turbulent Flows(PPT讲稿)Introductory FLUENT Training.ppt
- 隐马尔科夫模型和词性标注(PPT课件讲稿).ppt
- 哈尔滨工业大学:《中文信息处理》课程教学资源(PPT课件讲稿)句法分析(张宇).ppt
- Essential Cluster OS Commands.ppt
- 香港浸会大学:Kickstart Tutorial/Seminar on using the 64-nodes P4-Xeon Cluster in Science Faculty.ppt
- 香港浸会大学:并行输入输出(PPT讲稿)Parallel I/O.ppt
- 四川大学:《操作系统 Operating System》课程教学资源(PPT课件讲稿)Chapter 7 Memory Management.ppt
- 四川大学:《数据库技术》课程教学资源(PPT课件讲稿)第4章 数据库查询.ppt
- 《计算机系统结构》课程教学资源(PPT课件讲稿)第五章 存储层次.ppt
- 软件配置管理和项目管理工具(PPT讲稿)Software Configuration Management and Project Management Tool.ppt
- 《数据库基础》课程PPT教学课件(SQL Server)第4章 T-SQL与可编程对象.ppt
- 《嵌入式系统开发》课程PPT教学课件(讲稿)第一章 嵌入式系统概述.ppt
- 《编译原理 Compiler Construction》课程教学资源(PPT讲稿)语义分析 Semantic Analysis(Attributes and Attribute Grammars、Algorithms for Attribute Computation).ppt
- 四川大学:《Linux操作系统》课程教学资源(PPT课件讲稿)第6章 Linux系统调用.ppt
- 《数据库技术》课程教学资源(PPT课件讲稿)第3章 SQL语言基础及数据定义功能(主讲:曾晓东).ppt
- 四川大学:.NET and .NET Core:Languages, Cloud, Mobile and AI(PPT课件讲稿)NET for Data Science and AI.pptx
- 四川大学:《Matlab程序设计》课程教学资源(教学大纲)Programming in Matlab.pdf
- 电子科技大学:《计算系统与网络安全 Computer System and Network Security》课程教学资源(PPT课件讲稿)第4章 网络基础(网络概述、协议).ppt
- 电子科技大学:《计算系统与网络安全 Computer System and Network Security》课程教学资源(PPT课件讲稿)第7章 协议安全技术(安全协议实例).ppt
- 电子科技大学:《计算系统与网络安全 Computer System and Network Security》课程教学资源(PPT课件讲稿)第5章 网络隔离技术.ppt
- 电子科技大学:《计算系统与网络安全 Computer System and Network Security》课程教学资源(PPT课件讲稿)第2章 信息安全数学基础(计算复杂性).ppt
- 《计算机系统结构》课程教学资源(PPT课件讲稿)第五章 存储系统.ppt
- 《操作系统》课程教学资源(PPT课件讲稿)Chapter 03 Process Description And Control.ppt