香港科技大学:《微观经济学》(英文版) Chapter 1 Neoclassical Economics

Micro Theory, 2005 Chapter 1 Neoclassical Economics 1. Producer Theory 1. Technology yi =input of good i, y =output of good i, i= yi-yi=net output, y yn) is a production plan Production possibility set Y=technologically feasible production plans yE Rn) y E Y is technologically efficient if there is no yE Y s.t. y>y Production frontier=(technological efficient production plans) y E Y is economically efficient if it maximizes profit Proposition 1.1. Economic efficiency implies technological efficiency. Consider a single output y E R+. Denote E Rn as the firms inputs and define the production function f: Rn -R+ as f(x)≡,max.y ,-x)∈Y Proposition1.2.Pory∈R+,(3,-x) is technologically efficient→y=f(x)■
Chapter 1 Neoclassical Economics Micro Theory, 2005 1. Producer Theory 1.1. Technology y− i = input of good i, y+ i = output of good i, yi ≡ y+ i − y− i = net output, y = (y1, y2,...,yn) is a production plan. Production possibility set: Y = technologically feasible production plans y ∈ Rn . y ∈ Y is technologically efficient if there is no y0 ∈ Y s.t. y0 > y. Production frontier = technological efficient production plans . y ∈ Y is economically efficient if it maximizes profit. Proposition 1.1. Economic efficiency implies technological efficiency. Consider a single output y ∈ R+. Denote x ∈ Rn + as the firm’s inputs and define the production function f : Rn + → R+ as f(x) ≡ max (y,−x)∈Y y. Proposition 1.2. For y ∈ R+, (y, −x) is technologically efficient =⇒ y = f(x) 1—1

Isoquant Q()={x∈R+|y=f(x)} Marginal rate of transformation MRT()= /zi(a) f2(x) MRT() is the slope of the isoquant Example11.Cobb- Douglas Technology.For0≤a≤1, consider y≡ {(v,-1,-2)∈R+×R2|y≤a}.■ For production function f: R+-R+, it exhibits global constant returns to scale(CRS) if f(t r)=tf( global increasing returns to scale(Irs) if f(tr)>tf() lobal decreasing returns to scale(drs if f(t 1 Example 1.2. Consider f(a1, T2)=Azqr2 Elasticity of scale at a e(x)≡ dlog f(ta) e(a)=percentage increase in output for 1% increase in scale At a, we say that f exhibits local constant returns to scale(CRS) if e(r )=1 local increasing returns to scale(IRs) if e(a)>1 local decreasing returns to scale(DRS) if e()<1
Isoquant: Q(y) ≡ x ∈ Rn + | y = f(x) . Marginal rate of transformation: MRT(x) ≡ fx1 (x) fx2 (x) . MRT(x) is the slope of the isoquant. Example 1.1. Cobb-Douglas Technology. For 0 ≤ α ≤ 1, consider Y ≡ (y, −x1, −x2) ∈ R+ × R2 − | y ≤ xα 1x1−α 2 . For production function f : Rn + → R+, it exhibits global constant returns to scale (CRS) if f(tx) = tf(x); global increasing returns to scale (IRS) if f(tx) > tf(x); global decreasing returns to scale (DRS) if f(tx) 1. Example 1.2. Consider f(x1, x2) = Axa 1xb 2. Elasticity of scale at x : e(x) ≡ d log f(tx) d log t t=1 . e(x) = percentage increase in output for 1% increase in scale. At x, we say that f exhibits local constant returns to scale (CRS) if e(x) = 1; local increasing returns to scale (IRS) if e(x) > 1; local decreasing returns to scale (DRS) if e(x) < 1. 1—2

Proposition 1.3.(Returns to Scale) 1.Forx∈Rn, we have global IRS local IRS or CRS, Va global CRS local CRS,va global DRS => local DRS or CRS, Vr 2.Forx∈R+, we have e(a)=xf(a) f(ar) implying local IRS→f"(x) local crs→f(x)=e2 local Drs→f()MC, local crs←AC=MC local DRS→→AC<MC Elasticity of substitution alos alog y o is the percentage change in = for 1% increase in w1
Proposition 1.3. (Returns to Scale). 1. For x ∈ Rn, we have global IRS =⇒ local IRS or CRS, ∀ x global CRS =⇒ local CRS, ∀ x global DRS =⇒ local DRS or CRS, ∀ x 2. For x ∈ R+, we have e(x) = x · f0 (x) f(x) , implying local IRS ⇐⇒ f0 (x) > f(x) x local CRS ⇐⇒ f0 (x) = f(x) x local DRS ⇐⇒ f0 (x) MC, local CRS ⇐⇒ AC = MC, local DRS ⇐⇒ AC < MC. Elasticity of substitution: σ ≡ − ∂ log x1(w,y) x2(w,y) ∂ log w1 w2 . σ is the percentage change in x∗ 1 x∗ 2 for 1% increase in w1 w2 . 1—3

1.2. The firm's Problem The firm maximizes its profit or expected profit rofit= total revenue- total cost The cost is the economic cost or opportunity cost. The revenue is the money received from sales For n actions aERn, the firms problem is R(a-C(a) FOC aR(a*) aC(a2 or MR=MC, V i da Assume competitive firms(price takers)and a single output. Profit function 丌(D,)≡ max pf(x)-t·x Demand function: =c(p, w). Supply function: y(p, w)= fa(p, w. We have FOC Df(a D2f(r") a)2f(x”) <0 ac: a Cost function c(u,9)≡min{·x|y≤f(x)} Conditional demand function: a'=z(w, y). Lagrange function is C(a, A)=w.x+ №y-f(x).Then Df(a") fr , The SOC for(2.3) hD2f(x”)h≤0, for all h satisfying Df(x)·h=0 An equivalent problem of (2. 2)is py-c, y
1.2. The Firm’s Problem The firm maximizes its profit or expected profit. profit = total revenue − total cost. The cost is the economic cost or opportunity cost. The revenue is the money received from sales. For n actions a ∈ Rn, the firm’s problem is π ≡ maxa R(a) − C(a). FOC: ∂R(a∗) ∂ai = ∂C(a∗) ∂ai or MR = MC, ∀ i. (2.1) Assume competitive firms (price takers) and a single output. Profit function is π(p, w) ≡ maxx pf(x) − w · x. (2.2) Demand function: x∗ = x(p, w). Supply function: y(p, w) ≡ f[x(p, w)]. We have FOC : p Df(x∗ ) = w, SOC : D2 f(x∗ ) ≡ ∂2f(x∗) ∂xi∂xj ≤ 0. Cost function: c(w, y) ≡ minx {w · x | y ≤ f(x)}. (2.3) Conditional demand function: x∗ = x(w, y). Lagrange function is L(x, λ) = w · x + λ[y − f(x)]. Then, FOC: w = λ Df(x∗ ) or wi wj = fxi (x∗) fxj (x∗) , ∀ i, j. (2.4) The SOC for (2.3) is h0 D2 xf(x∗ )h ≤ 0, for all h satisfying Df(x∗ ) · h = 0. An equivalent problem of (2.2) is max y py − c(w, y). (2.5) 1—4

Then FOC. n dc(w, y") Example 1.3. Consider c(w, y)= min w1. 1+W2.C2 t. Ara The solution is r1(m2,m2,y)=4h/m2)命 1\a 2(U1,2,y)=Aa+ Thus xample 1.4. In e c(t1,2,y)=c(1,2)y+ Profit maximization max py-c(w1, w2)ya+6 Solution: +b v(P,t1,u2) c(1,2) ifa+b≠1.Then, P a+b 1)(a+b If a+b=l, profit maximization Inax p-c(n,2)]y
Then, FOC : p = ∂c(w, y∗) ∂y , SOC : ∂2c(w, y∗) ∂y2 ≥ 0. Example 1.3. Consider c(w, y) = min x1, x2 w1x1 + w2x2 s.t. Axa 1xb 2 = y. The solution is x1(w1, w2, y) = A− 1 a+b aw2 bw1 b a+b y 1 a+b , x2(w1, w2, y) = A− 1 a+b bw1 aw2 a a+b y 1 a+b . Thus, c(w1, w2, y) = A− 1 a+b a b b a+b + a b − a a+b w a a+b 1 w b a+b 2 y 1 a+b . Example 1.4. In Example 1.3, c(w1, w2, y) ≡ c(w1, w2)y 1 a+b . Profit maximization: max y py − c(w1, w2)y 1 a+b . Solution: y(p, w1, w2) = p a + b c(w1, w2) a+b 1−a−b , if a + b 9= 1. Then, π(p, w1, w2) = 1 a + b − 1 (a + b) 1 1−a−b p 1 1−a−b c(w1, w2) − a+b 1−a−b . If a + b = 1, profit maximization: max y [p − c(w1, w2)]y. 1—5

oo if p>c1, w2), 0,]ifp=c(1,2), 0 if p<c(wi, w2) Example 1.5. CES production function f(x1,x2)=(a1 We find (x1(v,y)/r2(0,y)(n/u2) 0(01/12)(x1/12)1 If p=l or a =oo, linear production function If p=0 or g= l, assume a1+a2=1. We have (a1xf+a2x2)2=1 which is the Cobb-Douglas Production Function. Ifp=-∞ora=0, assuming (1=a2≠0, we have y= lim(ai+a2 2)P=min(a1, T2) hich is the leontief Production Function 1.3. Properties Proposition 1. 4. If the production function is homogenous of degree a, c(w, y) c(,1) Proposition 1.5.(Cost Function). c(w, y)is (1) increasing in w (2)linearly homogeneous in w (3) concave in w
Solution: ys = ⎧ ⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎩ ∞ if p>c(w1, w2), [0, ∞] if p = c(w1, w2), 0 if p<c(w1, w2). Example 1.5. CES production function: y = f(x1, x2)=(a1xρ 1 + a2xρ 2) 1 ρ , ρ ∈ [−∞, 1]. We find σ ≡ − ∂(x1(w, y)/x2(w, y)) ∂(w1/w2) (w1/w2) (x1/x2) = 1 1 − ρ . If ρ = 1 or σ = ∞, linear production function: y = a1x1 + a2x2. If ρ = 0 or σ = 1, assume a1 + a2 = 1. We have y = lim ρ→0 (a1xρ 1 + a2xρ 2) 1 ρ = xa1 1 xa2 2 , which is the Cobb-Douglas Production Function. If ρ = −∞ or σ = 0, assuming a1 = a2 9= 0, we have y = lim ρ→−∞(a1xρ 1 + a2xρ 2) 1 ρ = min(x1, x2), which is the Leontief Production Function. 1.3. Properties Proposition 1.4. If the production function is homogenous of degree α, c(w, y) = y 1 α c(w, 1). Proposition 1.5. (Cost Function). c(w, y) is (1) increasing in w. (2) linearly homogeneous in w. (3) concave in w. 1—6

And, if c(w, y) is continuous, the three conditions are sufficient for cw, y) to be a cost function.■ What causes concavity in cos Proposition 1.6.(Profit Function). T(p, w)is (1) increasing in p, decreasing in w (2) linearly homogeneous in (p, w) (3) convex in(p, w) Proposition 1.7.(Hotelling s Lemma). If Ti(p, w) is an interior solution y(p, w) P Proposition 1.8.(Shephard's Lemma). If i(w, y) is an interior solution, i(, y) Proposition 1.9.(Conditional Demand ). If (w, y) is twice continuously differen tiable (1)aw, y) is zero homogeneous in w; (2) substitution matrix Duc(w, )<0 (3)symmetric cross-price effects: Br u n2=Dao (4)Ti(w, y) is decreasing Proposition 1.10.(Demand and Supply). If a(p, w) and y(p, w) are twice contin- uously differentiable (1)a(p, w) and y(p, w) are zero homogeneous in(p, w) (2)a(p, w) is decreasing in wi, y(p, w) is increasing in p (3)symmetric cross-price effects: Dxp, o = B(p u).D
And, if c(w, y) is continuous, the three conditions are sufficient for c(w, y) to be a cost function. What causes concavity in cost? Proposition 1.6. (Profit Function). π(p, w) is (1) increasing in p, decreasing in w; (2) linearly homogeneous in (p, w); (3) convex in (p, w). Proposition 1.7. (Hotelling’s Lemma). If xi(p, w) is an interior solution, y(p, w) = ∂π(p, w) ∂p , xi(p, w) = −∂π(p, w) ∂wi , ∀ i. Proposition 1.8. (Shephard’s Lemma). If xi(w, y) is an interior solution, xi(w, y) = ∂c(w, y) ∂wi , ∀ i. Proposition 1.9. (Conditional Demand). If x(w, y) is twice continuously differentiable, (1) x(w, y) is zero homogeneous in w; (2) substitution matrix Dwx(w, y) ≤ 0; (3) symmetric cross-price effects: ∂xi(w,y) ∂wj = ∂xj (w,y) ∂wi ; (4) xi(w, y) is decreasing in wi. Proposition 1.10. (Demand and Supply). If x(p, w) and y(p, w) are twice continuously differentiable, (1) x(p, w) and y(p, w) are zero homogeneous in (p, w); (2) xi(p, w) is decreasing in wi, y(p, w) is increasing in p; (3) symmetric cross-price effects: ∂xi(p,w) ∂wj = ∂xj (p,w) ∂wi . 1—7
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 香港科技大学:《微观经济学》(英文版) Corporate finance.pdf
- 香港科技大学:《微观经济学》(英文版) ProblemSet 3.pdf
- 香港科技大学:《微观经济学》(英文版) ProblemSet 2.pdf
- 香港科技大学:《微观经济学》(英文版) ProblemSet 1.pdf
- 香港科技大学:《微观经济学》(英文版) Lecture 9.pdf
- 香港科技大学:《微观经济学》(英文版) Lecture 8.pdf
- 香港科技大学:《微观经济学》(英文版) Lecture 7.pdf
- 香港科技大学:《微观经济学》(英文版) Lecture 6 Industrial Organization.pdf
- 香港科技大学:《微观经济学》(英文版) Lecture 5 Social welfare function.pdf
- 香港科技大学:《微观经济学》(英文版) Lecture 4 Walrasian equilibrium if.pdf
- 香港科技大学:《微观经济学》(英文版) Lecture 3 The Slutsky equation implies.pdf
- 香港科技大学:《微观经济学》(英文版) Lecture 2 Production Plans with Multiple Outputs.pdf
- 香港科技大学:《微观经济学》(英文版) Lecture10 Thus, to find Nash equilibria.pdf
- 香港科技大学:《微观经济学》(英文版) Chapter 2 Optimization.pdf
- 香港科技大学:《微观经济学》(英文版) Appendix: Math Preparation1.pdf
- 《CPA考试会计》讲义.doc
- 《宏观经济学》课程教学资源(英文版)入世谈判画上圆满句号中国入世要履行六大承诺.doc
- 《宏观经济学》课程教学资源(英文版)First What is the natural rate of.doc
- 《宏观经济学》课程教学资源(英文版)I guess I have to come out to reply to those who concern.doc
- 《宏观经济学》课程教学资源(英文版)The Multiplier Process as Market Exchange process.doc
- 玉林师范学院:《西方经济学》课程教学资源(PPT课件)第二章 需求和供给.ppt
- 玉林师范学院:《西方经济学》课程教学资源(PPT课件)第一章 引论.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(试卷习题)复习思考题答案.doc
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,宏观部分)第十七章 总需求与总供给.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,宏观部分)第十八章 失业与通货膨胀.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,宏观部分)第十九章 经济增长和周期理论.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,宏观部分)第二十章 经济学流派.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,微观部分)第三章 效用论(韩纪江).ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,微观部分)第四章 生产论.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,微观部分)第五章 成本论.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,微观部分)第六章 完全竞争市场中的厂商.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,微观部分)第七章 不完全竞争的市场.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,微观部分)第八章 生产要素价格决定的需求方面.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,微观部分)第九章 生产要素价格决定的供给方面.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,宏观部分)导言、第十二章 国民收入核算.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,宏观部分)第十三章 国民收入决定.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,宏观部分)第十五章 宏观经济政策分析.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,宏观部分)第三章 产品市场和货币市场的一般均衡.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,微观部分)第十六章 宏观经济政策实践.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,微观部分)第一章 引论(韩纪江).ppt