香港科技大学:《微观经济学》(英文版) Lecture 4 Walrasian equilibrium if

Definition 1.2.(a*, P,)is a Walrasian equilibrium if (1) For any i, a solves max ui(i) s.t.p·n;≤ (2)I*is feasible r≤ Equilibrium price p*. Equilibrium allocation: 2),H Note: A p* for any A>0 is also an equilibrium price Ofer curve: Pi(p)=Ti(p, p wi. The equilibrium is the intersection point of the ffer curves Excess demand function P* is determined by 2(p*)so Proposition 1. 25.( Walras Law). If preferences are strictly monotonic, then p 2(p) Lemma1.1.Let△k-1={p∈R|∑P=1}.Iff:△k-1→ r is continuous and satisfies p·f(p)=0,Vp∈△-l,then3p∈△k-1st.f(p)≤0 Theorem 1.2.(Existence of Equilibrium). If preferences are strictly convex, strictly monotonic, and continuous, then an equilibrium exists. L Good j is desirable if p;=0=2(p)>0 Proposition 1. 26.(Market Clearing). Suppose the preferences are strictly If good j is desirable, then 2(p)=0 and P>0 in equilibrium
Definition 1.2. (x∗, p∗) is a Walrasian equilibrium if (1) For any i, x∗ i solves ⎧ ⎪⎨ ⎪⎩ max ui(xi) s.t. p∗ · xi ≤ p∗ · wi (2) x∗ is feasible: [n i=1 x∗ i ≤ [n i=1 wi. Equilibrium price p∗. Equilibrium allocation: x∗ i = xi(p∗ , p∗ · wi), ∀ i. Note: λ p∗ for any λ > 0 is also an equilibrium price. Offer curve: ϕi(p) ≡ xi(p, p · wi). The equilibrium is the intersection point of the offer curves. Excess demand function: z(p) ≡ [n i=1 xi(p, p · wi) −[n i=1 wi. p∗ is determined by z(p∗) ≤ 0. Proposition 1.25. (Walras Law). If preferences are strictly monotonic, then p·z(p) = 0, ∀ p. Lemma 1.1. Let 7 k−1 ≡ {p ∈ Rk + | Spi = 1}. If f : 7k−1 → Rk is continuous and satisfies p · f(p)=0, ∀ p ∈ 7k−1, then ∃ p∗ ∈ 7k−1 s.t. f(p∗) ≤ 0. Theorem 1.2. (Existence of Equilibrium). If preferences are strictly convex, strictly monotonic, and continuous, then an equilibrium exists. Good j is desirable if pj = 0 ⇒ zj (p) > 0. Proposition 1.26. (Market Clearing). Suppose the preferences are strictly monotonic. If good j is desirable, then zj (p∗)=0 and p∗ j > 0 in equilibrium. 1 — 18

Theorem 1.3.(Uniqueness of Equilibrium). If the preferences are strictly monotonic, all demand functions are differentiable, and all goods are gross substitutes and desirable, then the equilibrium price p" is unique up to a positive multiplier, i.e (i/pk,……,r-1/p) Is unique Example 1. 13. Find the equilibrium for u1(a, g)=ry, u1=(10,20); u2(, 9)=a y 2=(20,5) Example 1. 14. Find the equilibrium for u1(, y)=mina, yF, 1=(40,0) u2(a, y)=mina, y1, 4.2. Optimality of Equilibria Definition 1.3. A feasible allocation is Pareto optimal or weakly Pareto optimal if there is no feasible allocation a' s.t. iri i, v i. That is, one can no longer make everyone better off. Definition 1. 4. A feasible allocation is strongly Pareto optimal if there is no feasible allocation a'st.(1)ai i,V i, and(2)3 io s.t. i io Tio. That is, one can no longer make anyone better off without hurting others Example 1.15. Suppose that there is only one good and two agents. Individual 1's con a =(a1, r2)E R2. The feasible set of allocations is the shaded area in Figure 4/Lector sumption is 1 E R and individual 2s consumption is 2 E R. The allocation is a Feasible setc Figure 4.5. One Good and Two agents 19
Theorem 1.3. (Uniqueness of Equilibrium). If the preferences are strictly monotonic, all demand functions are differentiable, and all goods are gross substitutes and desirable, then the equilibrium price p∗ is unique up to a positive multiplier, i.e. (p∗ 1/p∗ k, ..., p∗ k−1/p∗ k) is unique. Example 1.13. Find the equilibrium for u1(x, y) = xy, w1 = (10, 20); u2(x, y) = x2y, w2 = (20, 5). Example 1.14. Find the equilibrium for u1(x, y) = min{x, y}, w1 = (40, 0); u2(x, y) = min{x, y}, w2 = (0, 20). 4.2. Optimality of Equilibria Definition 1.3. A feasible allocation x is Pareto optimal or weakly Pareto optimal if there is no feasible allocation x0 s.t. x0 i "i xi, ∀ i. That is, one can no longer make everyone better off. Definition 1.4. A feasible allocation x is strongly Pareto optimal if there is no feasible allocation x0 s.t. (1) x0 i i xi, ∀ i, and (2) ∃ i0 s.t. x0 i0 "i0 xi0 . That is, one can no longer make anyone better off without hurting others. Example 1.15. Suppose that there is only one good and two agents. Individual 1’s consumption is x1 ∈ R and individual 2’s consumption is x2 ∈ R. The allocation is a vector x = (x1, x2) ∈ R2. The feasible set of allocations is the shaded area in Figure 4.5. 1 x 2 x Feasible set A B C D Figure 4.5. One Good and Two Agents 1 — 19

Example 1.16. Consider (x,y) All the points in the Edgeworth box are weakly PO, but only one point is strongly PO Proposition 1. 27. A strongly PO allocation is weakly PO. Conversely, if all the utility functions are continuous and strictly monotonic, a weakly Po allocation is strongly PO MRS is the slope of the indifference curve, measuring the substitutability of the two goods, defined by dui(ai)/aui(ai) MRSI(i)=a axh pay in good h for one more unit of good Z Proposition 1. 28. Suppose ui is differentiable, quasi-concave and Dru; (a)>0, V Then, a feasible allocation a is po iff MRSI(a1)=MRSI(a2) MRS(an) The contract curve is the set of all po allocations Cxample 1.17. For the agents in Example 1. 13, find the contract curve. L Example 1. 18. For the agents in Example 1. 14, find the PO allocations Theorem 1. 4.(First Welfare Theorem). If (a, p*) is a Walrasian equilibrium,I* is Pareto optimal Note: nothing about fairness Theorem 1.5.(Second Welfare Theorem). Suppose that preferences are continuous, strictly monotonic, and strictly convex. Then, any Pareto optimal allocation is a Walrasian equilibrium allocation with a proper redistribution of endowments Note: convexity of preferences is crucial
Example 1.16. Consider u1(x, y) = xy, u2(x, y)=1. All the points in the Edgeworth box are weakly PO, but only one point is strongly PO. Proposition 1.27. A strongly PO allocation is weakly PO. Conversely, if all the utility functions are continuous and strictly monotonic, a weakly PO allocation is strongly PO. MRSlh i is the slope of the indifference curve, measuring the substitutability of the two goods, defined by MRSlh i (xi) ≡ ∂ui(xi) ∂xl i ! ∂ui(xi) ∂xh i ≡ pay in good h for one more unit of good l. Proposition 1.28. Suppose ui is differentiable, quasi-concave and Dxui(x) > 0, ∀ i. Then, a feasible allocation x is PO iff MRSlh 1 (x1) = MRSlh 2 (x2) = ··· = MRSlh n (xn), ∀ l, h. The contract curve is the set of all PO allocations. Example 1.17. For the agents in Example 1.13, find the contract curve. Example 1.18. For the agents in Example 1.14, find the PO allocations. Theorem 1.4. (First Welfare Theorem). If (x∗, p∗) is a Walrasian equilibrium, x∗ is Pareto optimal. Note: nothing about fairness. Theorem 1.5. (Second Welfare Theorem). Suppose that preferences are continuous, strictly monotonic, and strictly convex. Then, any Pareto optimal allocation x∗ is a Walrasian equilibrium allocation with a proper redistribution of endowments. Note: convexity of preferences is crucial. 1 — 20
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 香港科技大学:《微观经济学》(英文版) Lecture 3 The Slutsky equation implies.pdf
- 香港科技大学:《微观经济学》(英文版) Lecture 2 Production Plans with Multiple Outputs.pdf
- 香港科技大学:《微观经济学》(英文版) Lecture10 Thus, to find Nash equilibria.pdf
- 香港科技大学:《微观经济学》(英文版) Chapter 2 Optimization.pdf
- 香港科技大学:《微观经济学》(英文版) Appendix: Math Preparation1.pdf
- 《CPA考试会计》讲义.doc
- 《宏观经济学》课程教学资源(英文版)入世谈判画上圆满句号中国入世要履行六大承诺.doc
- 《宏观经济学》课程教学资源(英文版)First What is the natural rate of.doc
- 《宏观经济学》课程教学资源(英文版)I guess I have to come out to reply to those who concern.doc
- 《宏观经济学》课程教学资源(英文版)The Multiplier Process as Market Exchange process.doc
- 《宏观经济学》课程教学资源(英文版)Integration of Market Exchange and money circulation.doc
- 《宏观经济学》课程教学资源(英文版)Syllabus:macroeconomics.doc
- 《宏观经济学》课程教学资源(英文版)Syllabus:macroeconomics.doc
- 《宏观经济学》课程教学资源(英文版)Macroeconomic policies.ppt
- 《宏观经济学》课程教学资源(英文版)Chapter 7:The Analysis of Price Determination.ppt
- 《宏观经济学》课程教学资源(英文版)Chapter 6. Labor Market Analysis.ppt
- 《宏观经济学》课程教学资源(英文版)Chapter 5:The analysis of Is LM Model.ppt
- 《宏观经济学》课程教学资源(英文版)Chapter 4:Money Marke Analysis.ppt
- 《宏观经济学》课程教学资源(英文版)Chapter 3:The Product Market Analysis.ppt
- 《宏观经济学》课程教学资源(英文版)Chapter 2:Macroeconomic data and variables.doc
- 香港科技大学:《微观经济学》(英文版) Lecture 5 Social welfare function.pdf
- 香港科技大学:《微观经济学》(英文版) Lecture 6 Industrial Organization.pdf
- 香港科技大学:《微观经济学》(英文版) Lecture 7.pdf
- 香港科技大学:《微观经济学》(英文版) Lecture 8.pdf
- 香港科技大学:《微观经济学》(英文版) Lecture 9.pdf
- 香港科技大学:《微观经济学》(英文版) ProblemSet 1.pdf
- 香港科技大学:《微观经济学》(英文版) ProblemSet 2.pdf
- 香港科技大学:《微观经济学》(英文版) ProblemSet 3.pdf
- 香港科技大学:《微观经济学》(英文版) Corporate finance.pdf
- 香港科技大学:《微观经济学》(英文版) Chapter 1 Neoclassical Economics.pdf
- 玉林师范学院:《西方经济学》课程教学资源(PPT课件)第二章 需求和供给.ppt
- 玉林师范学院:《西方经济学》课程教学资源(PPT课件)第一章 引论.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(试卷习题)复习思考题答案.doc
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,宏观部分)第十七章 总需求与总供给.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,宏观部分)第十八章 失业与通货膨胀.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,宏观部分)第十九章 经济增长和周期理论.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,宏观部分)第二十章 经济学流派.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,微观部分)第三章 效用论(韩纪江).ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,微观部分)第四章 生产论.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,微观部分)第五章 成本论.ppt