延安大学:《数字信号处理》课程PPT教学课件(DigitalSignal Processing,DSP)Programming with MATLAB

补充内容 Programming with MATLAB
Programming with MATLAB 补充内容:

Introduce MATLAB is a high-level language that includes matrix-based data structures, its own internal data types, an extensive catalog of functions, an environment in which to develop your own functions and scripts, the ability to import and export to many types of data files, object-oriented programming capabilities, and interfaces to external technologies such as COM, Java, programs written in C and Fortran, and serial port devices
Introduce MATLAB® is a high-level language that includes matrix-based data structures, its own internal data types, an extensive catalog of functions, an environment in which to develop your own functions and scripts, the ability to import and export to many types of data files, object-oriented programming capabilities, and interfaces to external technologies such as COM, Java, programs written in C and Fortran, and serial port devices

Introduce This lecture presents the MATLAB programming features and techniques in the following chapters ● Data Structures ● Data Types O Basic Program Components M-File Programming
Introduce This lecture presents the MATLAB programming features and techniques in the following chapters: ⚫Data Structures. ⚫Data Types. ⚫Basic Program Components. ⚫M-File Programming

Data Structures The most basic data structure in MATLAB is the matrix MATLAB uses these two-dimensional matrices to store single numbers and linear series of numbers as well. In these cases, the dimensions are 1-by-1 and 1-by-n respectively, where n is the length of the numeric series MATLAB also supports data structures that have more than two dimensions These data elements can be numbers characters logical states of true or false, or even other MATLAB structure types
Data Structures MATLAB uses these two-dimensional matrices to store single numbers and linear series of numbers as well. In these cases, the dimensions are 1-by-1 and 1-by-n respectively, where n is the length of the numeric series. The most basic data structure in MATLAB® is the matrix. These data elements can be numbers, characters, logical states of true or false, or even other MATLAB structure types. MATLAB also supports data structures that have more than two dimensions

1-1 Creating Matrice Method 1: Constructing a Simple matrix The simplest way to create a matrix in MATLAB is to use the matrix constructor operator, [ Create a row in the matrix by entering elements(shown as E below) within the brackets. Separate each element with a comma or space roW=[E1,E2,…,.m] roW=[E1E2…Em
1-1 Creating Matrice The simplest way to create a matrix in MATLAB is to use the matrix constructor operator, []. Create a row in the matrix by entering elements (shown as E below) within the brackets. Separate each element with a comma or space: row = [E1, E2, ..., Em] row = [E1 E2 ... Em] Method 1: Constructing a Simple Matrix

1-1 Creating Matrice For example, to create a one row matrix of five elements, type A=[126293-822] A=[126293-822;162874391;-417-72956 A 126293-822 162874391 417-72956 Note that all rows must have the same number of elements
1-1 Creating Matrice A = 12 62 93 -8 22 16 2 87 43 91 -4 17 -72 95 6 For example, to create a one row matrix of five elements, type A = [12 62 93 -8 22]; Note that all rows must have the same number of elements. A = [12 62 93 -8 22; 16 2 87 43 91; -4 17 -72 95 6]

1-1 Creating Matrice Method 2: Specialized Matrix Functions MATLAB has a number of functions that create different kinds of matrices. Some create specialized matrices like the hankel or vandermonde matrix The functions shown in the table below create a matrices for more general use
1-1 Creating Matrice MATLAB has a number of functions that create different kinds of matrices. Some create specialized matrices like the Hankel or Vandermonde matrix. Method 2: Specialized Matrix Functions The functions shown in the table below create a matrices for more general use

Function Description ones Create a matrix or array of all ones zeros Create a matrix or array of all zeros eve Create a matrix with ones on the diagonal and zeros elsewhere accumarray Distribute elements of an input matrix to specified locations in an output matrix also allowing for accumulation diag Create a diagonal matrix from a vector magIc Create a square matrix with rows, columns, and diagonals that add up to the same number rand Create a matrix or array of uniformly distributed random numbers randn Create a matrix or array of normally distributed random numbers and arrays randperm Create a vector(1-by-n matrix)containing a random permutation of the specified integers
Function Description ones Create a matrix or array of all ones. zeros Create a matrix or array of all zeros. eye Create a matrix with ones on the diagonal and zeros elsewhere. accumarray Distribute elements of an input matrix to specified locations in an output matrix, also allowing for accumulation. diag Create a diagonal matrix from a vector. magic Create a square matrix with rows, columns, and diagonals that add up to the same number. rand Create a matrix or array of uniformly distributed random numbers. randn Create a matrix or array of normally distributed random numbers and arrays. randperm Create a vector (1-by-n matrix) containing a random permutation of the specified integers

The first example is A= zeros(1, 6) A 0 0 0 The second example is magic that create a magic Square Matrix A= magic(5) A 17241815 23571416 46132022 101219213 11182529
The first example is A = zeros(1, 6) A = 0 0 0 0 0 0 The second example is magic that create a Magic Square Matrix. A = magic(5) A = 17 24 1 8 15 23 5 7 14 16 4 6 13 20 22 10 12 19 21 3 11 18 25 2 9

1-1 Creating Matrice Method 3: Concatenating Matrices Matrix concatenation is the process of joining one or more matrices to make a new matrix. The brackets l operator discussed earlier in this section serves not only as a matrix constructor, but also as the MATLAB concatenation operator The expression C=[AB] horizontally concatenates matrices A and B. The expression C= [A; B] vertically concatenates them
1-1 Creating Matrice The expression C = [A B] horizontally concatenates matrices A and B. The expression C = [A; B] vertically concatenates them. Method 3: Concatenating Matrices Matrix concatenation is the process of joining one or more matrices to make a new matrix. The brackets [] operator discussed earlier in this section serves not only as a matrix constructor, but also as the MATLAB concatenation operator
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 延安大学:《数字信号处理》课程PPT教学课件(DigitalSignal Processing,DSP)Chapter 7 FIR Digital Filter Design.ppt
- 延安大学:《数字信号处理》课程PPT教学课件(DigitalSignal Processing,DSP)Chapter 6 IIR Digital Filter Design.ppt
- 延安大学:《数字信号处理》课程PPT教学课件(DigitalSignal Processing,DSP)Chapter 5 Discrete-Time System Structures.ppt
- 延安大学:《数字信号处理》课程PPT教学课件(DigitalSignal Processing,DSP)Chapter 3 Finite-Length Discrete Transforms(DFT).ppt
- 延安大学:《数字信号处理》课程PPT教学课件(DigitalSignal Processing,DSP)Chapter 2 The Discreete-Time Fourier Transform(DTFT).ppt
- 延安大学:《数字信号处理》课程PPT教学课件(DigitalSignal Processing,DSP)Chapter 1 Discrete-Time Signals and Systems.ppt
- 延安大学:《数字信号处理》课程PPT教学课件(DigitalSignal Processing,DSP)Chapter 0 绪论 Preface.ppt
- 延安大学:《数字信号处理》课程教学讲稿(DigitalSignal Processing,DSP)数字信号处理教学方案.pdf
- 延安大学:《数字信号处理》课程教学讲稿(DigitalSignal Processing,DSP)数字信号处理教学方案(修订).doc
- 延安大学:《数字信号处理》课程教学讲稿(DigitalSignal Processing,DSP)Digital Signal Processing 作业.pdf
- 延安大学:《数字信号处理》课程教学讲稿(DigitalSignal Processing,DSP)Digital Signal Processing 作业.doc
- 延安大学:《数字信号处理》课程教学讲稿(DigitalSignal Processing,DSP)第7章 有限脉冲响应数字滤波器的设计.doc
- 延安大学:《数字信号处理》课程教学讲稿(DigitalSignal Processing,DSP)第6章 无限脉冲响应数字滤波器的设计.doc
- 延安大学:《数字信号处理》课程教学讲稿(DigitalSignal Processing,DSP)第5章 时域离散系统的网络结构.doc
- 延安大学:《数字信号处理》课程教学讲稿(DigitalSignal Processing,DSP)第4章 快速傅里叶变换(3/3).doc
- 延安大学:《数字信号处理》课程教学讲稿(DigitalSignal Processing,DSP)第4章 快速傅里叶变换(2/3).doc
- 延安大学:《数字信号处理》课程教学讲稿(DigitalSignal Processing,DSP)第4章 快速傅里叶变换(1/3).doc
- 延安大学:《数字信号处理》课程教学讲稿(DigitalSignal Processing,DSP)第1章 时域离散信号和时域离散系统.doc
- 延安大学:《数字信号处理》课程教学讲稿(DigitalSignal Processing,DSP)第3章 离散傅里叶变换.doc
- 延安大学:《数字信号处理》课程教学讲稿(DigitalSignal Processing,DSP)第2章 时域离散信号和系统的频域分析.doc
- 延安大学:《数字信号处理》课程PPT教学课件(DigitalSignal Processing,DSP)Some special filters.ppt
- 延安大学:《数字信号处理》课程PPT教学课件(DigitalSignal Processing,DSP)Chapter 8 多采样率数字信号处理(演示版).pptx
- 延安大学:《数字信号处理》课程PPT教学课件(DigitalSignal Processing,DSP)Chapter 4 Fast Fourier Transform(FFT)(演示版).pptx
- 重庆某高校课程:《数字信号处理》教学课件_第一章 緒论.pdf
- 重庆某高校课程:《数字信号处理》教学课件_第七章 快速傅里叶变换.pdf
- 重庆某高校课程:《数字信号处理》教学课件_第三章 离散时间信号与离散时间系统.pdf
- 重庆某高校课程:《数字信号处理》教学课件_第九章 无限冲激响应数字滤波器的设计.pdf
- 重庆某高校课程:《数字信号处理》教学课件_第二章 连续时间信号与连续时间系统.pdf
- 重庆某高校课程:《数字信号处理》教学课件_第五章 序列的傅里里叶变换.pdf
- 重庆某高校课程:《数字信号处理》教学课件_第八章 数字滤波器的结构.pdf
- 重庆某高校课程:《数字信号处理》教学课件_第六章 离散傅里叶级数和离散傅里叶变换.pdf
- 重庆某高校课程:《数字信号处理》教学课件_第十章 有限冲激响应数字滤波器的设计.pdf
- 重庆某高校课程:《数字信号处理》教学课件_第四章 序列的Z变换.pdf
- 延安大学:《模拟电子技术基础》课程教学资源(第三版)资源共享课程申报书(本科).pdf
- 延安大学:《模拟电子技术基础》课程教学资源(第三版)教学大纲.pdf
- 延安大学:《模拟电子技术基础》课程教学资源(第三版)教学方案.pdf
- 延安大学:《模拟电子技术基础》课程教学资源(第三版)电子教案讲义(共十章,主讲:李建新).pdf
- 延安大学:《模拟电子技术基础》课程教学资源(第三版,习题解答)第一章 常用半导体器件.pdf
- 延安大学:《模拟电子技术基础》课程教学资源(第三版,习题解答)第三章 多级放大电路.pdf
- 延安大学:《模拟电子技术基础》课程教学资源(第三版,习题解答)第二章 基本放大电路.pdf