延安大学:《数字信号处理》课程PPT教学课件(DigitalSignal Processing,DSP)Chapter 5 Discrete-Time System Structures

Chapter 5 Network structures of Discrete-Time system
Chapter 5 Network Structures of Discrete-Time system

Content ● Introduce o Network Representation with Signal Flow-Graph o Basic IIR System structures o Basic FIR System structures o Linear phase structures ● Frequency Sample
Content ⚫ Introduce ⚫ Network Representation with Signal Flow-Graph ⚫ Basic IIR System Structures ⚫ Basic FIR System Structures ⚫ Linear Phase Structures ⚫ Frequency Sample

5.1 Introduce O Discrete-time system representation a discrete-time system can be described by the input-output relation, impulse response and system function N y(n)=2bx(n-1)-2a, y(n-i) h(n) H(2)=Y(z) ∑b X(二) +)a.z
5.1 Introduce ⚫ Discrete-time system representation 0 1 ( ) ( ) ( ) M N i i i i y n b x n i a y n i = = = − − − 0 1 ( ) ( ) ( ) 1 M i i i N i i i b z Y z H z X z a z − = − = = = + h n( ) A discrete-time system can be described by the input-output relation, impulse response and system function

5.1 Introduce o Discrete-time system representation In the time domain, the input-output relations of an Lti discrete-time system is given by the convolution sum or, by the linear constant coefficient difference equation y(n)=∑h(k)x(n-k) k: (m)=∑dy{n-k]+∑P2xn-k
5.1 Introduce ⚫ Discrete-time system representation ( ) ( ) ( ) k y n h k x n k =− = − In the time domain, the input-output relations of an LTI discrete-time system is given by the convolution sum or, by the linear constant coefficient difference equation. ( ) N M k k y n d y n k p x n k = − − + −

5.1 Introduce o Discrete-time system representation a discrete-time system can be implemented on a general purpose digital computer in software or with special-purpose hardware. To this end, it is necessary to describe the input- output relationship by means of a computational algorithm
5.1 Introduce ⚫ Discrete-time system representation ◆ A discrete-time system can be implemented on a generalpurpose digital computer in software or with special-purpose hardware. To this end, it is necessary to describe the inputoutput relationship by means of a computational algorithm

5.1 Introduce o a structural representation using interconnected basic building blocks is the first step in the hardware or software implementation of an lti digital filter o The structural representation provides the relations between some pertinent internal variables with the input and the output that in turn, provides the keys to the implementation
5.1 Introduce A structural representation using interconnected basic building blocks is the first step in the hardware or software implementation of an LTI digital filter. The structural representation provides the relations between some pertinent internal variables with the input and the output that, in turn, provides the keys to the implementation

5.1 Introduce o There are various forms of the structural representation of a digital filter o There are literally an infinite number of equivalent structures realizing the same transfer function o However, the accuracy, computing speed, complexity is different for the different structure
5.1 Introduce There are various forms of the structural representation of a digital filter. There are literally an infinite number of equivalent structures realizing the same transfer function. However , the accuracy, computing speed, complexity is different for the different structure

5.2 System Representation with signal flow-graph o The computational algorithm of an lti digital filter can be conveniently represented in block diagram form using the basic building blocks representing the unit delay, the multiplier, the adder, and the pick-off nodes
5.2 System Representation with signal flow-graph The computational algorithm of an LTI digital filter can be conveniently represented in block diagram form using the basic building blocks representing the unit delay, the multiplier, the adder, and the pick-off nodes

5.2 System Representation with signal flow-graph Unit delay x(n) x(n-1) x(n) x(n 2 Multiplier xr(n ax(n) Adder x1(m)+x2(m) x1(m) ·x1(n)+x2(m)
5.2 System Representation with signal flow-graph z - 1 x(n) x(n- 1) x(n) ax(n) a x 1 (n) x2 (n) x 1 (n)+x 2 (n) x(n) z x(n- 1) - 1 x(n) a ax(n) x 1 (n) x2 (n) x 1 (n)+x 2 (n) Unit delay Multiplier Adder

5.2 System Representation with signal flow-graph o In a signal flow-graph, the dependent and independent signal variables are represented by nodes, whereas the multiplier and the delay units are represented by directed branches. In the latter case. the directed branch has attached symbol denoting the branch-go rain or the transmittance, which, for a multiplier branch, is the multiplier coefficient value and for a delay branch is Simply z
5.2 System Representation with signal flow-graph In a signal flow-graph, the dependent and independent signal variables are represented by nodes, whereas the multiplier and the delay units are represented by directed branches. In the latter case, the directed branch has attached symbol denoting the branch-gain or the transmittance, which, for a multiplier branch, is the multiplier coefficient value and for a delay branch is simply z-1
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 延安大学:《数字信号处理》课程PPT教学课件(DigitalSignal Processing,DSP)Chapter 3 Finite-Length Discrete Transforms(DFT).ppt
- 延安大学:《数字信号处理》课程PPT教学课件(DigitalSignal Processing,DSP)Chapter 2 The Discreete-Time Fourier Transform(DTFT).ppt
- 延安大学:《数字信号处理》课程PPT教学课件(DigitalSignal Processing,DSP)Chapter 1 Discrete-Time Signals and Systems.ppt
- 延安大学:《数字信号处理》课程PPT教学课件(DigitalSignal Processing,DSP)Chapter 0 绪论 Preface.ppt
- 延安大学:《数字信号处理》课程教学讲稿(DigitalSignal Processing,DSP)数字信号处理教学方案.pdf
- 延安大学:《数字信号处理》课程教学讲稿(DigitalSignal Processing,DSP)数字信号处理教学方案(修订).doc
- 延安大学:《数字信号处理》课程教学讲稿(DigitalSignal Processing,DSP)Digital Signal Processing 作业.pdf
- 延安大学:《数字信号处理》课程教学讲稿(DigitalSignal Processing,DSP)Digital Signal Processing 作业.doc
- 延安大学:《数字信号处理》课程教学讲稿(DigitalSignal Processing,DSP)第7章 有限脉冲响应数字滤波器的设计.doc
- 延安大学:《数字信号处理》课程教学讲稿(DigitalSignal Processing,DSP)第6章 无限脉冲响应数字滤波器的设计.doc
- 延安大学:《数字信号处理》课程教学讲稿(DigitalSignal Processing,DSP)第5章 时域离散系统的网络结构.doc
- 延安大学:《数字信号处理》课程教学讲稿(DigitalSignal Processing,DSP)第4章 快速傅里叶变换(3/3).doc
- 延安大学:《数字信号处理》课程教学讲稿(DigitalSignal Processing,DSP)第4章 快速傅里叶变换(2/3).doc
- 延安大学:《数字信号处理》课程教学讲稿(DigitalSignal Processing,DSP)第4章 快速傅里叶变换(1/3).doc
- 延安大学:《数字信号处理》课程教学讲稿(DigitalSignal Processing,DSP)第1章 时域离散信号和时域离散系统.doc
- 延安大学:《数字信号处理》课程教学讲稿(DigitalSignal Processing,DSP)第3章 离散傅里叶变换.doc
- 延安大学:《数字信号处理》课程教学讲稿(DigitalSignal Processing,DSP)第2章 时域离散信号和系统的频域分析.doc
- 延安大学:《数字信号处理》课程教学讲稿(DigitalSignal Processing,DSP)第8章 其它类型的数字滤波器.doc
- 延安大学:《数字信号处理》课程教学讲稿(DigitalSignal Processing,DSP)第7章 有限脉冲响应数字滤波器的设计.pdf
- 延安大学:《数字信号处理》课程教学讲稿(DigitalSignal Processing,DSP)第6章 无限脉冲响应数字滤波器的设计.pdf
- 延安大学:《数字信号处理》课程PPT教学课件(DigitalSignal Processing,DSP)Chapter 6 IIR Digital Filter Design.ppt
- 延安大学:《数字信号处理》课程PPT教学课件(DigitalSignal Processing,DSP)Chapter 7 FIR Digital Filter Design.ppt
- 延安大学:《数字信号处理》课程PPT教学课件(DigitalSignal Processing,DSP)Programming with MATLAB.ppt
- 延安大学:《数字信号处理》课程PPT教学课件(DigitalSignal Processing,DSP)Some special filters.ppt
- 延安大学:《数字信号处理》课程PPT教学课件(DigitalSignal Processing,DSP)Chapter 8 多采样率数字信号处理(演示版).pptx
- 延安大学:《数字信号处理》课程PPT教学课件(DigitalSignal Processing,DSP)Chapter 4 Fast Fourier Transform(FFT)(演示版).pptx
- 重庆某高校课程:《数字信号处理》教学课件_第一章 緒论.pdf
- 重庆某高校课程:《数字信号处理》教学课件_第七章 快速傅里叶变换.pdf
- 重庆某高校课程:《数字信号处理》教学课件_第三章 离散时间信号与离散时间系统.pdf
- 重庆某高校课程:《数字信号处理》教学课件_第九章 无限冲激响应数字滤波器的设计.pdf
- 重庆某高校课程:《数字信号处理》教学课件_第二章 连续时间信号与连续时间系统.pdf
- 重庆某高校课程:《数字信号处理》教学课件_第五章 序列的傅里里叶变换.pdf
- 重庆某高校课程:《数字信号处理》教学课件_第八章 数字滤波器的结构.pdf
- 重庆某高校课程:《数字信号处理》教学课件_第六章 离散傅里叶级数和离散傅里叶变换.pdf
- 重庆某高校课程:《数字信号处理》教学课件_第十章 有限冲激响应数字滤波器的设计.pdf
- 重庆某高校课程:《数字信号处理》教学课件_第四章 序列的Z变换.pdf
- 延安大学:《模拟电子技术基础》课程教学资源(第三版)资源共享课程申报书(本科).pdf
- 延安大学:《模拟电子技术基础》课程教学资源(第三版)教学大纲.pdf
- 延安大学:《模拟电子技术基础》课程教学资源(第三版)教学方案.pdf
- 延安大学:《模拟电子技术基础》课程教学资源(第三版)电子教案讲义(共十章,主讲:李建新).pdf