重庆大学:《大数据技术基础》课程教学资源(课件讲稿)09 Spark内存计算

第9章 Spark
第9章 Spark

提纲 91 Sparki概述 92 Spark生态系统 93 Spark运行架构 9. 4 Spark SQL 95 Spark的部署和应用方式 96 Spark编程实践
提纲 • 9.1 Spark概述 • 9.2 Spark生态系统 • 9.3 Spark运行架构 • 9.4 Spark SQL • 9.5 Spark的部署和应用方式 • 9.6 Spark编程实践

9.1 Sparki概述 9.1.1Spak简介 91.2 Scala简介 9.13 Spark与 Hadoop的比较
9.1 Spark概述 9.1.1 Spark简介 9.1.2 Scala简介 9.1.3 Spark与Hadoop的比较

91.1 Spark简介 Spark最初由美国加州伯克利大学( UCBerkeley)的AMP 实验室于2009年开发,是基于内存计算的大数据并行计算 框架,可用于构建大型的、低延迟的数据分析应用程序 2013年 Spark加入 Apache孵化器项目后发展迅猛,如今已 成为 Apache软件基金会最重要的三大分布式计算系统开源 项目之一( Hadoop、 Spark、 Storm) Spark在2014年打破了 Hadoop保持的基准排序纪录 spark/206个节点/23分钟/100TB数据 Hadoop.2000个节点/72分钟/100TB数据 Spark用十分之一的计算资源,获得了比 Hadoop快3倍 的速度
9.1.1 Spark简介 •Spark最初由美国加州伯克利大学(UCBerkeley)的AMP 实验室于2009年开发,是基于内存计算的大数据并行计算 框架,可用于构建大型的、低延迟的数据分析应用程序 •2013年Spark加入Apache孵化器项目后发展迅猛,如今已 成为Apache软件基金会最重要的三大分布式计算系统开源 项目之一(Hadoop、Spark、Storm) •Spark在2014年打破了Hadoop保持的基准排序纪录 •Spark/206个节点/23分钟/100TB数据 •Hadoop/2000个节点/72分钟/100TB数据 •Spark用十分之一的计算资源,获得了比Hadoop快3倍 的速度

91.1 Spark简介 Spark具有如下几个主要特点: 运行速度快:使用DAG执行引擎以支持循环数据流与内存计算 容易使用:支持使用 Scala、Java、 Python和R语言进行编程,可以通过 Spark Shell进行交互式编程 通用性: Spark提供了完整而强大的技术栈,包括SL查询、流式计算 、机器学习和图算法组件 ˉ运行模式多样:可运行于独立的集群模式中,可运行于 Hadoop中,也 可运行于 Amazon ec2等云环境中,并且可以访问HDFS、 Cassandra、 HBase、Hive等多种数据源
9.1.1 Spark简介 Spark具有如下几个主要特点: •运行速度快:使用DAG执行引擎以支持循环数据流与内存计算 •容易使用:支持使用Scala、Java、Python和R语言进行编程,可以通过 Spark Shell进行交互式编程 •通用性:Spark提供了完整而强大的技术栈,包括SQL查询、流式计算 、机器学习和图算法组件 •运行模式多样:可运行于独立的集群模式中,可运行于Hadoop中,也 可运行于Amazon EC2等云环境中,并且可以访问HDFS、Cassandra、 HBase、Hive等多种数据源

91.1 Spark简介 Spark如今已吸引了国内外各大公司的注意,如腾讯、淘宝、百度、亚马 逊等公司均不同程度地使用了Spak来构建大数据分析应用,并应用到实 际的生产环境中 op 2013年7月 2014年1月 2014年7月 2015年1月2015年7月 2016年1月 图16-1谷歌趋势:Spak与 Hadoop对比
9.1.1 Spark简介 图16-1 谷歌趋势:Spark与Hadoop对比 Spark如今已吸引了国内外各大公司的注意,如腾讯、淘宝、百度、亚马 逊等公司均不同程度地使用了Spark来构建大数据分析应用,并应用到实 际的生产环境中

9.1.2Scaa简介 Scala是一门现代的多范式编程语言,运行于Java平台(JV Java虚拟机),并兼容现有的Java程序 Scala的特性 Scala具备强大的并发性,支持函数式编程,可以更好地支持分布 式系统 . Scala语法简洁,能提供优雅的APIⅠ Scala兼容Java,运行速度快,且能融合到 Hadoop生态圈中 scaa是 Sparkl的主要编程语言,但 Spark还支持Java、 Python、R 作为编程语言 Scala的优势是提供了REPL(Read-Eval- Print Loop,交互式解释 器),提高程序开发效率
9.1.2 Scala简介 Scala是一门现代的多范式编程语言,运行于Java平台(JVM, Java 虚拟机),并兼容现有的Java程序 Scala的特性: •Scala具备强大的并发性,支持函数式编程,可以更好地支持分布 式系统 •Scala语法简洁,能提供优雅的API Scala兼容Java,运行速度快,且能融合到Hadoop生态圈中 Scala是Spark的主要编程语言,但Spark还支持Java、Python、R 作为编程语言 Scala的优势是提供了REPL(Read-Eval-Print Loop,交互式解释 器),提高程序开发效率

9.1.3Spak与 Hadoop的对比 Hadoop存在如下一些缺点 表达能力有限 磁盘IO开销大 ·延迟高 任务之间的衔接涉及IO开销 在前一个任务执行完成之前,其他任务就无法 开始,难以胜任复杂、多阶段的计算任务
9.1.3 Spark与Hadoop的对比 Hadoop存在如下一些缺点: •表达能力有限 •磁盘IO开销大 •延迟高 •任务之间的衔接涉及IO开销 •在前一个任务执行完成之前,其他任务就无法 开始,难以胜任复杂、多阶段的计算任务

9.1.3Spak与 Hadoop的对比 Spark在借鉴 Hadoop MapReduce优点的同时,很好地解决了 MapReduce所面临的问题 相比于 Hadoop Mapreduce, Spark主要具有如下优点: Spark的计算模式也属于 MapReduce,但不局限于Map和 Reduce操作 ,还提供了多种数据集操作类型,编程模型比 Hadoop Mapreduce更 灵活 Spak提供了内存计算,可将中间结果放到内存中,对于迭代运算 效率更高 Spark基于DAG的任务调度执行机制,要优于 Hadoop MapReduce的 迭代执行机制
9.1.3 Spark与Hadoop的对比 Spark在借鉴Hadoop MapReduce优点的同时,很好地解决了 MapReduce所面临的问题 相比于Hadoop MapReduce,Spark主要具有如下优点: •Spark的计算模式也属于MapReduce,但不局限于Map和Reduce操作 ,还提供了多种数据集操作类型,编程模型比Hadoop MapReduce更 灵活 •Spark提供了内存计算,可将中间结果放到内存中,对于迭代运算 效率更高 Spark基于DAG的任务调度执行机制,要优于Hadoop MapReduce的 迭代执行机制

9.1.3Spak与 Hadoop的对比 HDE HDES HDES HDIS 选代1 (a) Hadoop MapReduce执行流程 读取 内存中 内存中 迭代1 迭代2 存储在 内存中 查询2 图16-2 Hadoop与 Spark的执行流程对比 (b) Spark执行流程
9.1.3 Spark与Hadoop的对比 图16-2 Hadoop与Spark的执行流程对比
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 重庆大学:《大数据技术基础》课程教学资源(课件讲稿)08 流计算 Stream Computing.pdf
- 重庆大学:《大数据技术基础》课程教学资源(课件讲稿)07 图计算 Graph Computing.pdf
- 重庆大学:《大数据技术基础》课程教学资源(课件讲稿)06 HBase.pdf
- 重庆大学:《大数据技术基础》课程教学资源(课件讲稿)05 HDFS.pdf
- 重庆大学:《大数据技术基础》课程教学资源(课件讲稿)04 MapReduce.pdf
- 重庆大学:《大数据技术基础》课程教学资源(课件讲稿)03 Hadoop.pdf
- 重庆大学:《大数据技术基础》课程教学资源(课件讲稿)02 大数据关键技术与挑战.pdf
- 重庆大学:《大数据技术基础》课程教学资源(课件讲稿)01 大数据概述.pdf
- 重庆大学:《大数据技术基础》课程教学资源(课件讲稿)13 大数据技术应用(大数据商业应用).pdf
- 重庆大学:《大数据技术基础》课程教学资源(课件讲稿)12 大数据技术应用(应用举例).pdf
- 重庆大学:《大数据技术基础》课程教学资源(课件讲稿)11 NoSQL数据库.pdf
- 重庆大学:《大数据技术基础》课程教学资源(课件讲稿)10 数据可视化 Visualization.pdf
- 重庆大学:《计算机图形学》课程教学课件(讲义)07 数字分析技术——空间句法.pdf
- 重庆大学:《计算机图形学》课程教学课件(讲义)06 BIM技术——基于自主规则设定的全方位碰撞检查技术 Building Informationg Modeling —The Omni-bearing Collision Check Technology Based on Rule Definition.pdf
- 重庆大学:《计算机图形学》课程教学课件(讲义)05 BIM模型建模技术——ArchiCAD 虚拟建筑——BIM为建筑设计领域带来了第二次革命.pdf
- 重庆大学:《计算机图形学》课程教学课件(讲义)04 数字化建筑设计理论与方法——建筑信息模型(建筑BIM技术).pdf
- 重庆大学:《计算机图形学》课程教学课件(讲义)03 CAD技术的五次重大革命.pdf
- 重庆大学:《计算机图形学》课程教学课件(讲义)02 数字建筑——-非线性建筑案例分析 非线性建筑 & 参数化主义 Non - linear Architecture & PARAMETRICISM.pdf
- 重庆大学:《计算机图形学》课程教学课件(讲义)01 数字化建筑设计理论与方法——建筑数字技术概论(主讲:曾旭东).pdf
- 重庆邮电大学:《高级数据库系统技术》课程教学资源(课件讲稿)09 查询处理与查询优化.pdf
- 重庆师范大学:《人工智能》精品课程PPT教学课件_VR虚拟现实和AR增强现实技术.ppt
- 重庆师范大学:《人工智能 AI》精品课程PPT教学课件_绪论、第1章 人工智能概述.ppt
- 重庆师范大学:《人工智能 AI》精品课程PPT教学课件_第2章 知识表示.ppt
- 重庆师范大学:《人工智能 AI》精品课程PPT教学课件_第3章 推理技术.ppt
- 重庆师范大学:《人工智能 AI》精品课程PPT教学课件_第4章 智能计算(计算智能).ppt
- 重庆师范大学:《人工智能 AI》精品课程PPT教学课件_第5章 搜索策略.ppt
- 重庆师范大学:《人工智能 AI》精品课程PPT教学课件_第6章 机器学习.ppt
- 重庆师范大学:《人工智能 AI》精品课程PPT教学课件_第7章 机器人规划.ppt
- 重庆大学:《数据仓库与数据挖掘 Data Warehouse and Data mining》课程PPT教学课件(英文版)Chapter 1 introduction.ppt
- 重庆大学:《数据仓库与数据挖掘 Data Warehouse and Data mining》课程PPT教学课件(英文版)Chapter 2 about data - Getting to Know Your Data.ppt
- 重庆大学:《数据仓库与数据挖掘 Data Warehouse and Data mining》课程PPT教学课件(英文版)Chapter 3 Data Preprocessing.ppt
- 重庆大学:《数据仓库与数据挖掘 Data Warehouse and Data mining》课程PPT教学课件(英文版)Chapter 4 OLAP - Data Warehousing and On-line Analytical Processing.ppt
- 重庆大学:《数据仓库与数据挖掘 Data Warehouse and Data mining》课程PPT教学课件(英文版)Chapter 5 Mining Frequent Patterns, Association and Correlations:Basic Concepts and Methods.ppt
- 重庆大学:《数据仓库与数据挖掘 Data Warehouse and Data mining》课程PPT教学课件(英文版)Chapter 6 Advanced Frequent Pattern Mining.ppt
- 重庆大学:《数据仓库与数据挖掘 Data Warehouse and Data mining》课程PPT教学课件(英文版)Chapter 7 Classification:Basic Concepts.ppt
- 重庆大学:《数据仓库与数据挖掘 Data Warehouse and Data mining》课程PPT教学课件(英文版)Chapter 8 Cluster Analysis:Basic Concepts and Methods.pptx
- 重庆大学:《数据仓库与数据挖掘 Data Warehouse and Data mining》课程PPT教学课件(英文版)Chapter 9 Outlier Analysis.ppt
- 延安大学:《网页制作基础教程》课程教学资源_教学大纲.pdf
- 延安大学:《网页制作基础教程》学术论文_基于AJAX技术的Web模型在网站互动平台的应用研究.pdf
- 延安大学:《网页制作基础教程》学术论文_基于RIA技术的实验演示系统的设计与实现.pdf