重庆大学:《数据仓库与数据挖掘 Data Warehouse and Data mining》课程PPT教学课件(英文版)Chapter 6 Advanced Frequent Pattern Mining

Chapter 6: Advanced Frequent Pattern Mining Pattern Mining: A road Map Pattern Mining in Multi-Level, multi-Dimensional space Constraint-Based Frequent Pattern Mining Mining High-Dimensional Data and Colossal Patterns Mining Compressed or Approximate Patterns Pattern Exploration and application ■ Summary
1 Chapter 6 : Advanced Frequent Pattern Mining ◼ Pattern Mining: A Road Map ◼ Pattern Mining in Multi-Level, Multi-Dimensional Space ◼ Constraint-Based Frequent Pattern Mining ◼ Mining High-Dimensional Data and Colossal Patterns ◼ Mining Compressed or Approximate Patterns ◼ Pattern Exploration and Application ◼ Summary

frequent patterm Basic Pattens association rule closed/max patten ■ generator Kinds of Multilevel a multilevel(uniform, varied, or itemset -based support) patterns Multidimensional a multidimensional pattern( incl high-dimensional patten) and rules Pattems a continuous data( discretization -based, or statistical) ■ approximate pattem ■ uncertain pattem Extended Patterns ■ compressed patten a rare pattern/negative pattem iEEE a high-dimensional and colossal pattens a candidate generation( Apriori, partitioning, sampling, - Basic Mining Pattem growth( FPgrowth, HMine, FPMax, Closet+, -. Methods 555a55 a vertical format( EClat, CHARM,. a interestingness(subjective vs objective) Mining Methods Mining Interesting ■ constraint-based mining Patterns correlation rules ■ exception rules Distributed parallel a distributed/parallel mining incremental incremental mining stream pattern sequential ad time-series patterns structural(e. g, tree, lattice, graph)pattens Extended Data spatial(e. g, Co-location) pattern Types temporal(evolutionary, perodic) o image, video and multimedia pattems Extensions ■ network pattems Application g pattem-based classification pattem-based clustering Applications pattem-based semantic annotation collaborative flitering ■ pnvacy-preserving
Research on Pattern Mining: A Road Map 2

Pattern Mining in Multi-Level, multi- Dimensional Space Mining multi-Level Association Mining multi-Dimensional association Mining Quantitative Association Rules Mining rare patterns and Negative patterns
3 Pattern Mining in Multi-Level, MultiDimensional Space ◼ Mining Multi-Level Association ◼ Mining Multi-Dimensional Association ◼ Mining Quantitative Association Rules ◼ Mining Rare Patterns and Negative Patterns

Computer Software Printer and Camera Computer Accessory Laptop Digital Desktop Office AntivirusPrinter Wrist Pad Mouse Camera IBM Dell Mirosot Canon…| Fellowes……| LogiTech ////八 Figure 7.2 Concept hierarchy for AllElectronics computer items
Figure 7.2 Concept hierarchy for AllElectronics computer items

Level 1 min_ sup=5% computer support=10%] Level 2 min_ sup=5% laptop computetsuppot=6%] desktop computer [support=4%] Figure 7.3 Multilevel mining with uniform support
Figure 7.3 Multilevel mining with uniform support

Level 1 min sup=5% computer(support= 10%] Level 2 min sup=3% laptop computetsupport =6%] desktop computer [suppot=4%] Figure 7. 4 Multilevel mining with reduced support
Figure 7.4 Multilevel mining with reduced support

Mining Multiple-Level Association Rules Items often form hierarchies Flexible support settings Items at the lower level are expected to have lower support Exploration of shared multi-level mining(agrawal Srikant@VLB95, Han Fu@VLDB95) uniform support reduced support Level l Milk min sup =5% Level 1 Support=10%1 min sup=5% Level 2 Milk Skim milk Level2 min_sup=5% [support=6%1: [support=4%1 min sup =3% 7
7 Mining Multiple-Level Association Rules ◼ Items often form hierarchies ◼ Flexible support settings ◼ Items at the lower level are expected to have lower support ◼ Exploration of shared multi-level mining (Agrawal & Srikant@VLB’95, Han & Fu@VLDB’95) uniform support Milk [support = 10%] 2% Milk [support = 6%] Skim Milk [support = 4%] Level 1 min_sup = 5% Level 2 min_sup = 5% Level 1 min_sup = 5% Level 2 min_sup = 3% reduced support

Multi-level Association: Flexible Support and Redundancy filtering Flexible min-support thresholds: Some items are more valuable but less frequent Use non-uniform, group-based min-support E.g. diamond watch, camera]: 0. 05% bread milk 5%/ Redundancy filtering Some rules may be redundant due to ancestor"relationships between items milk= wheat bread [support=8%, confidence= 70%] 2 milk wheat bread [support= 2%, confidence = 72%] The first rule is an ancestor of the second rule a rule is redundant if its support is close to the expected"value based on the rule's ancestor
8 Multi-level Association: Flexible Support and Redundancy filtering ◼ Flexible min-support thresholds: Some items are more valuable but less frequent ◼ Use non-uniform, group-based min-support ◼ E.g., {diamond, watch, camera}: 0.05%; {bread, milk}: 5%; … ◼ Redundancy Filtering: Some rules may be redundant due to “ancestor” relationships between items ◼ milk wheat bread [support = 8%, confidence = 70%] ◼ 2% milk wheat bread [support = 2%, confidence = 72%] The first rule is an ancestor of the second rule ◼ A rule is redundant if its support is close to the “expected” value, based on the rule’s ancestor

Mining Multi-Dimensional Association Single-dimensional rules buys(X,"milk)= buys(X,"bread) Multi-dimensional rules:22 dimensions or predicates Inter-dimension assoc rules(no repeated predicates) age(X, 19-25)A occupation(X, student)= buys(X,"coke hybrid-dimension assoc rules(repeated predicates) age(X, 19-25)A buys(X, popcorn)= buys(X,coke") Categorical Attributes: finite number of possible values,no ordering among values--data cube approach Quantitative Attributes: Numeric, implicit ordering among valuesdiscretization, clustering and gradient approaches
9 Mining Multi-Dimensional Association ◼ Single-dimensional rules: buys(X, “milk”) buys(X, “bread”) ◼ Multi-dimensional rules: 2 dimensions or predicates ◼ Inter-dimension assoc. rules (no repeated predicates) age(X,”19-25”) occupation(X,“student”) buys(X, “coke”) ◼ hybrid-dimension assoc. rules (repeated predicates) age(X,”19-25”) buys(X, “popcorn”) buys(X, “coke”) ◼ Categorical Attributes: finite number of possible values, no ordering among values—data cube approach ◼ Quantitative Attributes: Numeric, implicit ordering among values—discretization, clustering, and gradient approaches

Mining Quantitative Associations Techniques can be categorized by how numerical attributes such as age or salary are treated 1. Static discretization based on predefined concept hierarchies(data cube methods) 2. Dynamic discretization based on data distribution (quantitative rules eg Agrawal srikant@SIGMOD96 3. Clustering: Distance-based association(e.g. Yang Miller@SIGMOD97 One dimensional clustering then association 4. Deviation:(such as Aumann and Lindell@KDD99) Sex= female = Wage: mean=$7/hr(overall mean= $9)
10 Mining Quantitative Associations Techniques can be categorized by how numerical attributes, such as age or salary are treated 1. Static discretization based on predefined concept hierarchies (data cube methods) 2. Dynamic discretization based on data distribution (quantitative rules, e.g., Agrawal & Srikant@SIGMOD96) 3. Clustering: Distance-based association (e.g., Yang & Miller@SIGMOD97) ◼ One dimensional clustering then association 4. Deviation: (such as Aumann and Lindell@KDD99) Sex = female => Wage: mean=$7/hr (overall mean = $9)
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 重庆大学:《数据仓库与数据挖掘 Data Warehouse and Data mining》课程PPT教学课件(英文版)Chapter 5 Mining Frequent Patterns, Association and Correlations:Basic Concepts and Methods.ppt
- 重庆大学:《数据仓库与数据挖掘 Data Warehouse and Data mining》课程PPT教学课件(英文版)Chapter 4 OLAP - Data Warehousing and On-line Analytical Processing.ppt
- 重庆大学:《数据仓库与数据挖掘 Data Warehouse and Data mining》课程PPT教学课件(英文版)Chapter 3 Data Preprocessing.ppt
- 重庆大学:《数据仓库与数据挖掘 Data Warehouse and Data mining》课程PPT教学课件(英文版)Chapter 2 about data - Getting to Know Your Data.ppt
- 重庆大学:《数据仓库与数据挖掘 Data Warehouse and Data mining》课程PPT教学课件(英文版)Chapter 1 introduction.ppt
- 重庆师范大学:《人工智能 AI》精品课程PPT教学课件_第7章 机器人规划.ppt
- 重庆师范大学:《人工智能 AI》精品课程PPT教学课件_第6章 机器学习.ppt
- 重庆师范大学:《人工智能 AI》精品课程PPT教学课件_第5章 搜索策略.ppt
- 重庆师范大学:《人工智能 AI》精品课程PPT教学课件_第4章 智能计算(计算智能).ppt
- 重庆师范大学:《人工智能 AI》精品课程PPT教学课件_第3章 推理技术.ppt
- 重庆师范大学:《人工智能 AI》精品课程PPT教学课件_第2章 知识表示.ppt
- 重庆师范大学:《人工智能 AI》精品课程PPT教学课件_绪论、第1章 人工智能概述.ppt
- 重庆师范大学:《人工智能》精品课程PPT教学课件_VR虚拟现实和AR增强现实技术.ppt
- 重庆大学:《大数据技术基础》课程教学资源(课件讲稿)09 Spark内存计算.pdf
- 重庆大学:《大数据技术基础》课程教学资源(课件讲稿)08 流计算 Stream Computing.pdf
- 重庆大学:《大数据技术基础》课程教学资源(课件讲稿)07 图计算 Graph Computing.pdf
- 重庆大学:《大数据技术基础》课程教学资源(课件讲稿)06 HBase.pdf
- 重庆大学:《大数据技术基础》课程教学资源(课件讲稿)05 HDFS.pdf
- 重庆大学:《大数据技术基础》课程教学资源(课件讲稿)04 MapReduce.pdf
- 重庆大学:《大数据技术基础》课程教学资源(课件讲稿)03 Hadoop.pdf
- 重庆大学:《数据仓库与数据挖掘 Data Warehouse and Data mining》课程PPT教学课件(英文版)Chapter 7 Classification:Basic Concepts.ppt
- 重庆大学:《数据仓库与数据挖掘 Data Warehouse and Data mining》课程PPT教学课件(英文版)Chapter 8 Cluster Analysis:Basic Concepts and Methods.pptx
- 重庆大学:《数据仓库与数据挖掘 Data Warehouse and Data mining》课程PPT教学课件(英文版)Chapter 9 Outlier Analysis.ppt
- 延安大学:《网页制作基础教程》课程教学资源_教学大纲.pdf
- 延安大学:《网页制作基础教程》学术论文_基于AJAX技术的Web模型在网站互动平台的应用研究.pdf
- 延安大学:《网页制作基础教程》学术论文_基于RIA技术的实验演示系统的设计与实现.pdf
- 延安大学:《网页制作基础教程》学术论文_服务器推技术在实验演示系统中的应用.pdf
- 延安大学:《网页制作基础教程》学术论文_用户行为驱动的网页布局自动调整的研究.pdf
- 《网页制作基础教程》参考书籍(PDF):JavaScript 权威指南(第四版).pdf
- 《网页制作基础教程》参考书籍(PDF):Python学习手册(第3版,涵盖Pathon 2.5).pdf
- 《网页制作基础教程》参考书籍:CSS Mastery 精通CSS书籍——高级WEB标准解决方案(人民邮电出版社).pdf
- 延安大学:《网页制作基础教程》课程PPT教学课件_第一章 网页结构(牛永洁).ppt
- 延安大学:《网页制作基础教程》课程PPT教学课件_第二章 网页头部.ppt
- 延安大学:《网页制作基础教程》课程PPT教学课件_第三章 格式化.ppt
- 延安大学:《网页制作基础教程》课程PPT教学课件_第四章 列表的应用.ppt
- 延安大学:《网页制作基础教程》课程PPT教学课件_第五章 使用图像与多媒体.ppt
- 延安大学:《网页制作基础教程》课程PPT教学课件_第六章 使用超级链接.ppt
- 延安大学:《网页制作基础教程》课程PPT教学课件_第七章 在网页中使用表格.ppt
- 延安大学:《网页制作基础教程》课程PPT教学课件_第八章 在网页中使用框架的使用.ppt
- 延安大学:《网页制作基础教程》课程PPT教学课件_第九章 表单.ppt