重庆大学:《数据仓库与数据挖掘 Data Warehouse and Data mining》课程PPT教学课件(英文版)Chapter 1 introduction

I Data Warehouse and data mInIng Yufang Zhang Department of Computer Science Chongqing University Zhangyf@cqu.edu.cn
1 Data Warehouse and Data mining Yufang Zhang Department of Computer Science, Chongqing University zhangyf@cqu.edu.cn

Course structures ◆ coverage Database, i Data mining Intro, to data warehousing and mining Data mining: Principles and algorithms Independent study: only if you seriously plan to do your Ph. D /M.S. on data mining and try to demonstrate your ability text information systems, Web and bioinformatics
2 Course Structures Coverage: ◼ Database, ◼ Data mining Intro. to data warehousing and mining Data mining: Principles and algorithms Independent Study: only if you seriously plan to do your Ph.D./M.S. on data mining and try to demonstrate your ability ◼ text information systems, ◼ Web and bioinformatics

OBJECTIVE/DESCRIPTION o The course will introduce concepts and techniques of data mining and data warehousing, including concept principle architecture design implementation application of data warehousing and data mining 2 Some systems for data warehousing and/or data mining will also be introduced
3 OBJECTIVE/DESCRIPTION The course will introduce concepts and techniques of data mining and data warehousing, including ◼ concept ◼ principle ◼ architecture ◼ design ◼ implementation ◼ application of data warehousing and data mining. Some systems for data warehousing and/or data mining will also be introduced

Reference books Data Mining: Concepts and Techniques(3rd edition) Jiawei Han Micheline Kamber and Jian pei China machine press o Data Mining: Concepts and Techniques (2nd edition Jiawei Han and Micheline Kamber China machine press Data Mining: Concepts and Techniques a Jiawei Han and micheline Kamber Higher Education Press o Introduction to Data Mining Tan steinbach Kumar ■ Turing e Data mining: Introductory and Advanced Topics Margaret H. dunham 清华大学出版社
4 Reference Books Data Mining: Concepts and Techniques (3rd edition) ◼ Jiawei Han, Micheline Kamber and Jian Pei ◼ China Machine Press Data Mining: Concepts and Techniques (2nd edition) ◼ Jiawei Han and Micheline Kamber ◼ China Machine Press Data Mining: Concepts and Techniques ◼ Jiawei Han and Micheline Kamber ◼ Higher Education Press Introduction to Data Mining ◼ Tan, Steinbach, Kumar ◼ Turing Data mining: Introductory and Advanced Topics ◼ Margaret H. Dunham ◼ 清华大学出版社

Acknowledgements These teaching slides are cited from the text book and searched from internet Some cases are cited from blog of Professor Tang Changjie
5 Acknowledgements These teaching slides are cited from the text book and searched from Internet Some cases are cited from blog of Professor Tang Changjie

Coverage(Chapters 1-10 3rd Ed. Coverage(BK2: 2nd Ed ◆ Coverage(BK3:3ed.) 1. Introduction Introduction 2. Getting to Know Your Data Data Preprocessing 3. Data Preprocessing 4. Data Warehouse and oLAP Technology: An Data Warehouse and olap Introduction Technology: An Introduction 5. Advanced Data Cube Technology 6. Mining Frequent Patterns Association Advanced Data Cube Technology Basic concepts and Data generalization 7. Mining Frequent Patterns association Advanced methoe Mining Frequent Patterns 8. Classification: Basic Concepts Association and Correlations 9. Classification: Advanced Methods Classification and prediction 10. Cluster Analysis: Basic Concepts 11. Cluster Analysis: Advanced Methods Cluster Analysis 12. Outlier Analysis
6 Coverage (Chapters 1-10, 3rd Ed.) Coverage (BK2: 2nd Ed.) ◼ Introduction ◼ Data Preprocessing ◼ Data Warehouse and OLAP Technology: An Introduction ◼ Advanced Data Cube Technology and Data Generalization ◼ Mining Frequent Patterns, Association and Correlations ◼ Classification and Prediction ◼ Cluster Analysis Coverage (BK3: 3rd ed.) 1. Introduction 2. Getting to Know Your Data 3. Data Preprocessing 4. Data Warehouse and OLAP Technology: An Introduction 5. Advanced Data Cube Technology 6. Mining Frequent Patterns & Association: Basic Concepts 7. Mining Frequent Patterns & Association: Advanced Methods 8. Classification: Basic Concepts 9. Classification: Advanced Methods 10. Cluster Analysis: Basic Concepts 11. Cluster Analysis: Advanced Methods 12. Outlier Analysis

TOPICS introduction o Getting to Know Your Data data preprocessing o data warehousing and oLAP technology: An Introduction o Mining frequent patterns association: Basic Concepts o Classification: Basic Concepts o Cluster analysis: Basic Concepts ◆ Outlier analysis
7 TOPICS introduction Getting to Know Your Data data preprocessing data warehousing and OLAP technology: An Introduction Mining frequent patterns & Association: Basic Concepts Classification: Basic Concepts Cluster analysis: Basic Concepts Outlier analysis

Chapter 1. Introduction o Motivation: Why data mining? ◆ What is data mining? o A Multi-Dimensional View of Data Mining What Kinds of Data Can Be Mined? What Kinds of Patterns Can Be mined? o What Kinds of Technologies Are Used? o What Kinds of Applications Are Targeted? o Major Issues in Data Mining o A Brief History of Data Mining and data Mining society ◆ Summary
8 Chapter 1. Introduction Motivation: Why data mining? What is data mining? A Multi-Dimensional View of Data Mining What Kinds of Data Can Be Mined? What Kinds of Patterns Can Be Mined? What Kinds of Technologies Are Used? What Kinds of Applications Are Targeted? Major Issues in Data Mining A Brief History of Data Mining and Data Mining Society Summary

Mother of Invention心 Motivation: Necessity the o Data explosion problem: from terabytes to petabytes Data collection and data availabi Automated data collection tools, database systems, Web computerized society Major sources of abundant data Business: Web, e-commerce, transactions, stocks Science: Remote sensing, bioinformatics, scientific simulation, Society and everyone: news, digital cameras, o We are drowning in data, but starving for knowledge!
9 Motivation: “Necessity is the Mother of Invention” Data explosion problem : from terabytes to petabytes ◼ Data collection and data availability Automated data collection tools, database systems, Web, computerized society ◼ Major sources of abundant data Business: Web, e-commerce, transactions, stocks, … Science: Remote sensing, bioinformatics, scientific simulation, … Society and everyone: news, digital cameras, We are drowning in data, but starving for knowledge!

Evolution of sciences, new data science era e Before 1600: Empirical science o1600-1950s: Theoretical science Each discipline has grown a theoretical component Theoretical models often motivate experiments and generalize our understanding 1950s-1990S: Computational science Over the last 50 years, most disciplines have grown a third, computationalbranch( e.g. empirical, theoretical, and computational ecology or physics, or linguistics. Computational science traditionally meant simulation. It grew out of our inability to find closed-form solutions for complex mathematical models. 10
10 Evolution of Sciences: New Data Science Era Before 1600: Empirical science 1600-1950s: Theoretical science ◼ Each discipline has grown a theoretical component. Theoretical models often motivate experiments and generalize our understanding. 1950s-1990s: Computational science ◼ Over the last 50 years, most disciplines have grown a third, computational branch (e.g. empirical, theoretical, and computational ecology, or physics, or linguistics.) ◼ Computational Science traditionally meant simulation. It grew out of our inability to find closed-form solutions for complex mathematical models
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 重庆师范大学:《人工智能 AI》精品课程PPT教学课件_第7章 机器人规划.ppt
- 重庆师范大学:《人工智能 AI》精品课程PPT教学课件_第6章 机器学习.ppt
- 重庆师范大学:《人工智能 AI》精品课程PPT教学课件_第5章 搜索策略.ppt
- 重庆师范大学:《人工智能 AI》精品课程PPT教学课件_第4章 智能计算(计算智能).ppt
- 重庆师范大学:《人工智能 AI》精品课程PPT教学课件_第3章 推理技术.ppt
- 重庆师范大学:《人工智能 AI》精品课程PPT教学课件_第2章 知识表示.ppt
- 重庆师范大学:《人工智能 AI》精品课程PPT教学课件_绪论、第1章 人工智能概述.ppt
- 重庆师范大学:《人工智能》精品课程PPT教学课件_VR虚拟现实和AR增强现实技术.ppt
- 重庆大学:《大数据技术基础》课程教学资源(课件讲稿)09 Spark内存计算.pdf
- 重庆大学:《大数据技术基础》课程教学资源(课件讲稿)08 流计算 Stream Computing.pdf
- 重庆大学:《大数据技术基础》课程教学资源(课件讲稿)07 图计算 Graph Computing.pdf
- 重庆大学:《大数据技术基础》课程教学资源(课件讲稿)06 HBase.pdf
- 重庆大学:《大数据技术基础》课程教学资源(课件讲稿)05 HDFS.pdf
- 重庆大学:《大数据技术基础》课程教学资源(课件讲稿)04 MapReduce.pdf
- 重庆大学:《大数据技术基础》课程教学资源(课件讲稿)03 Hadoop.pdf
- 重庆大学:《大数据技术基础》课程教学资源(课件讲稿)02 大数据关键技术与挑战.pdf
- 重庆大学:《大数据技术基础》课程教学资源(课件讲稿)01 大数据概述.pdf
- 重庆大学:《大数据技术基础》课程教学资源(课件讲稿)13 大数据技术应用(大数据商业应用).pdf
- 重庆大学:《大数据技术基础》课程教学资源(课件讲稿)12 大数据技术应用(应用举例).pdf
- 重庆大学:《大数据技术基础》课程教学资源(课件讲稿)11 NoSQL数据库.pdf
- 重庆大学:《数据仓库与数据挖掘 Data Warehouse and Data mining》课程PPT教学课件(英文版)Chapter 2 about data - Getting to Know Your Data.ppt
- 重庆大学:《数据仓库与数据挖掘 Data Warehouse and Data mining》课程PPT教学课件(英文版)Chapter 3 Data Preprocessing.ppt
- 重庆大学:《数据仓库与数据挖掘 Data Warehouse and Data mining》课程PPT教学课件(英文版)Chapter 4 OLAP - Data Warehousing and On-line Analytical Processing.ppt
- 重庆大学:《数据仓库与数据挖掘 Data Warehouse and Data mining》课程PPT教学课件(英文版)Chapter 5 Mining Frequent Patterns, Association and Correlations:Basic Concepts and Methods.ppt
- 重庆大学:《数据仓库与数据挖掘 Data Warehouse and Data mining》课程PPT教学课件(英文版)Chapter 6 Advanced Frequent Pattern Mining.ppt
- 重庆大学:《数据仓库与数据挖掘 Data Warehouse and Data mining》课程PPT教学课件(英文版)Chapter 7 Classification:Basic Concepts.ppt
- 重庆大学:《数据仓库与数据挖掘 Data Warehouse and Data mining》课程PPT教学课件(英文版)Chapter 8 Cluster Analysis:Basic Concepts and Methods.pptx
- 重庆大学:《数据仓库与数据挖掘 Data Warehouse and Data mining》课程PPT教学课件(英文版)Chapter 9 Outlier Analysis.ppt
- 延安大学:《网页制作基础教程》课程教学资源_教学大纲.pdf
- 延安大学:《网页制作基础教程》学术论文_基于AJAX技术的Web模型在网站互动平台的应用研究.pdf
- 延安大学:《网页制作基础教程》学术论文_基于RIA技术的实验演示系统的设计与实现.pdf
- 延安大学:《网页制作基础教程》学术论文_服务器推技术在实验演示系统中的应用.pdf
- 延安大学:《网页制作基础教程》学术论文_用户行为驱动的网页布局自动调整的研究.pdf
- 《网页制作基础教程》参考书籍(PDF):JavaScript 权威指南(第四版).pdf
- 《网页制作基础教程》参考书籍(PDF):Python学习手册(第3版,涵盖Pathon 2.5).pdf
- 《网页制作基础教程》参考书籍:CSS Mastery 精通CSS书籍——高级WEB标准解决方案(人民邮电出版社).pdf
- 延安大学:《网页制作基础教程》课程PPT教学课件_第一章 网页结构(牛永洁).ppt
- 延安大学:《网页制作基础教程》课程PPT教学课件_第二章 网页头部.ppt
- 延安大学:《网页制作基础教程》课程PPT教学课件_第三章 格式化.ppt
- 延安大学:《网页制作基础教程》课程PPT教学课件_第四章 列表的应用.ppt