香港中文大学:Adaboost for building robust classifiers(PPT讲稿)

Ch 6: Adaboost for buildin robust classifiers KH Wong Adaboost, Vga
Ch. 6: Adaboost for building robust classifiers KH Wong Adaboost , V9a 1

Overview Objectives of ada boost Solve 2-class classification problems Will discuss Training Detection Examples Adaboost, Vga
Overview • Objectives of AdaBoost • Solve 2-class classification problems • Will discuss – Training – Detection – Examples Adaboost , V9a 2

Obiective automatically classify inputs into different categories of similar features Example Spam mail detection and filtering Face detection: find the faces in the input image Vision based gesture recognition [chen2007] 3」sp
Objective • Automatically classify inputs into different categories of similar features • Example – Spam mail detection and filtering – Face detection: • find the faces in the input image – Vision based gesture recognition [Chen 2007] Adaboost , V9a 3

Different detection problems Two-class problem will be discussed here E.g. face detection In a picture are there any faces or no face? Multi-class problems(not discussed here Adaboost can be extended to handle multi class problems In a picture are there any faces of men women, children (Still an unsolved problem Adaboost, Vga
Different detection problems • Two-class problem (will be discussed here) – E.g. face detection • In a picture, are there any faces or no face? • Multi-class problems (Not discussed here) – Adaboost can be extended to handle multi class problems • In a picture, are there any faces of men , women, children ? (Still an unsolved problem) Adaboost , V9a 4

Define a 2-class classifier its method and procedures Supervised training Show many positive samples(face) to the system Show many negative samples(non- face) to the system Learn the parameters and construct the final strong classifier. Detection Given an unknown input image the system can tell if there are faces or not Adaboost, Vga
Define a 2-class classifier :its method and procedures • Supervised training – Show many positive samples (face) to the system – Show many negative samples (non-face) to the system. – Learn the parameters and construct the final strong classifier. • Detection – Given an unknown input image, the system can tell if there are faces or not. Adaboost , V9a 5

We will learn Training procedures Give +ve and -ve examples to the system then the system will learn to classify an unknown input E. g. give pictures of faces( +ve examples and non-faces (ve examples to train the system Detection procedures Input an unknown(e.g. an image), the system will tell you it is a face or not Adaboost, Vga ace non-face 6
We will learn • Training procedures – Give +ve and –ve examples to the system, then the system will learn to classify an unknown input. • E.g. give pictures of faces (+ve examples) and non-faces (-ve examples) to train the system. • Detection procedures – Input an unknown (e.g. an image) , the system will tell you it is a face or not. Adaboost , V9a Face non 6 -face

A line y=mX+c Exercise 1 a linear m=3,c=2 (a) When x=1y=3*x+2=5.50 programming example when y=5.5, is x,y 因 Figure bovell/below[ii the line? File Edit Yiew Insert Tools Desktop Window Help 口白命气气← Answer:[]or[ⅲ]? =mx+c, m=3, C=2, X1,y=5 (a) When x=0,y=3*x+2=2.S0 y-mxC when y"=1.5, is(x,y") axIs above[l/below[ii] the line? Answer [i]or [i]? X=0,y=2 y=mxc y-mXmX+c if a(x,y is below and on the right side X-axis of the line y=mx+c, y<mx+c Adaboost, Vga
Exercise 1 :A linear programming example • A line y=mx+c • m=3, c=2 • (a) When x=1, y=3*x+2=5. So when y’=5.5, is (x,y’) above[i]/below[ii] the line? • Answer: [i] or [ii]?________ • (a) When x=0, y=3*x+2=2. So when y”=1.5, is (x,y”) above[i]/below[ii] the line? • Answer: [i] or [ii]?________ • Conclusion, – if a point (x,y) is above and on the left of the line y=mx+c, y>mx+c – if a (x,y) is below and on the right side of the line y=mx+c, yc y-mx<c

A line y=mX+c ANSWER 1: Alinear m=3,c=2 (a) When x=1y=3*x+2=5.50 programming example when y=5.5, is x,y 因 Figure bovell/below[ii the line? File Edit Yiew Insert Tools Desktop Window Help Answer: i or [ii? i above =mx+c, m=3, C=2, X1,y=5 (a) When x=0,y=3*x+2=2.S0 y-mxC when y"=1.5, is(,y axIs above[il /below[ii] the line? Answer: [i or [ii? ii below X=0,y=2 y=mxc y-mXmX+c if a(x,y is below and on the right side X-axis of the line y=mx+c, y<mx+c Adaboost, Vga
ANSWER 1 :A linear programming example • A line y=mx+c • m=3, c=2 • (a) When x=1, y=3*x+2=5. So when y’=5.5, is (x,y’) above[i]/below[ii] the line? • Answer: [i] or [ii]?_i above • (a) When x=0, y=3*x+2=2. So when y”=1.5, is (x,y”) above[i]/below[ii] the line? • Answer: [i] or [ii]?_ii below • Conclusion, – if a point (x,y) is above and on the left of the line y=mx+c, y>mx+c – if a (x,y) is below and on the right side of the line y=mx+c, yc y-mx<c

First let us learn what is a weak classifier h( -Case 1 If a point(x=lu, v Dis in the "gray area, h(x)=+I For this weak classifier p, m, c otherwise h(x=u, vD=-1. It can be written as are constants defining the classifier, variables h(r)=+I if v-muC At timet, combine case l and 2 together to become equation(() V-muc 1 otherwise Adaboost, vga
First let us learn what is a weak classifier h( ) • ( ) 1 otherwise 1 if ( ) , ( ) becomes where are constants, are variables. is the function :( ( [ , ]) ,) and where polarity { 1or -1}, ( ) 1 otherwise 1 if ( ) ( ) and use polarity to control which case you want to use. --At time , combine case1and 2 together to become equation 1 otherwise 1 where , are given constants ( ) otherwise [ ] 1.It can be written as: If a point ( [ , ])isin the "white" area , 1 --Case2--1 otherwise 1 if ,where , are given constants ( ) otherwise [ ] 1.It can be written as: If a point ( [ ])isin the "gray"area , 1 --Case1-- ii p v mu p c h x p v mu p c equation i m,c u,v f f x u v v mu c p i p f x p h x p t (i) if -(v-mu) c , m,x h x h(x u,v ) x u v h(x) v-mu c m,x h x h(x u,v ) x u,v h(x) t t t t t t t t t t t t t − − − − − − − − − − + − = − = − = = + − − − − − − − − − − + = − + − = = = − = = + − + = = = − = = + 9 Adaboost , V9a v=mu+c or v-mu=c •m,c are used to define the line •Any points in the gray area satisfy v-muc v c Gradient m (0,0) v-muc u For this weak classifier pt ,m,c are constants defining the classifier. Variables u,v are inputs. If u,v is here , h(x=[u,v])=1 If u,v is here , h(x=[u,v])=-1

The weak classifier( a summary) Function f is a straight line V=mutC By definition a weak classifier or should be slightly better than a V-mu=c random choice(probability of correct classifcation =0.5) Gradient ml Otherwise you should use a dice! In lu, v]space, the decision V-mu>c function f: (v-mu =c is a straight V-mu<c line defined by m, c 0,0)u1 Adaboost, Vga
The weak classifier (a summary) • By definition a weak classifier should be slightly better than a random choice (probability of correct classifcation =0.5) . Otherwise you should use a dice! • In [u,v] space, the decision function f : (v-mu)=c is a straight line defined by m,c. Adaboost , V9a 10 Function f is a straight line v c Gradient m (0,0) v-muc u v=mu+c or v-mu=c
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《软件测试》课程教学资源(PPT讲稿)集成测试.pptx
- 《大学计算机基础》课程教学资源(PPT课件讲稿)第三章 字处理软件 Word2003.ppt
- 《现代操作系统 Modern Operating Systems》课程教学资源(PPT课件讲稿,Third Edition)Chapter 10 Case Study 1 LINUX.ppt
- 《微机原理与接口技术》课程教学资源(PPT课件讲稿)第1章 微型计算机基础概论.ppt
- 电子工业出版社:《计算机网络》课程教学资源(第五版,PPT课件讲稿)第八章 因特网上的音频/视频服务.ppt
- PARALLELISM IN HASKELL(Kathleen Fisher).pptx
- 南京大学:《数据结构 Data Structures》课程教学资源(PPT课件讲稿)第九章 排序.ppt
- 厦门大学:《大数据技术原理与应用》课程教学资源(PPT课件讲稿,2017)第9章 Spark.ppt
- 中国科学技术大学:《嵌入式系统设计》课程教学资源(PPT课件讲稿)第2章 ARM微处理器概述与编程模型(王行甫).ppt
- 电子工业出版社:《计算机网络》课程教学资源(第五版,PPT课件讲稿)第二章 物理层.ppt
- 南京大学:可信软件(PPT讲稿)认识、度量与评估.ppt
- 《C语言程序设计》课程电子教案(PPT课件讲稿)第六章 函数.ppt
- “互联网+”与“+互联网”(PPT讲稿).pptx
- 《Computer Networking:A Top Down Approach》英文教材教学资源(PPT课件讲稿,6th edition)Chapter 6 无线和移动网络 Wireless and Mobile Networks.ppt
- 面向服务的业务流程管理(PPT讲稿)Introduction to Business Process Management(BPM).pptx
- 《图像处理与计算机视觉 Image Processing and Computer Vision》课程教学资源(PPT课件讲稿)Chapter 04 Feature extraction and tracking.pptx
- 香港科技大学:Advanced Topics in Next Generation Wireless Networks.ppt
- 《Java语言程序设计》课程教学资源(PPT课件讲稿)第三章 Java面向对象程序设计.ppt
- 《数据结构》课程教学资源(PPT课件讲稿)第六章 树与二叉树(6.1-6.3).ppt
- 四川大学:《Linux操作系统》课程教学资源(PPT课件讲稿)第2章 Linux操作系统管理基础.ppt
- 福建工程学院:《软件工程》课程教学资源(实验指导书).doc
- 《数据结构》课程教学资源(PPT课件讲稿)第九章 排序.ppt
- 《图像处理与计算机视觉 Image Processing and Computer Vision》课程教学资源(PPT课件讲稿)Chapter 02 Image processing and computer vision(Camera models and parameters).pptx
- 四川大学:软件设计工具(PPT课件讲稿)Software design tool.ppt
- 《操作系统原理》课程教学大纲.pdf
- Homomorphic Secret Sharing:Low-End HSS from OWF、HSS for Branching Programs from DDH、The HSS Construction.ppsx
- 清华大学:《计算机网络》课程教学资源(PPT课件讲稿)Lecture 4 Routing.pptx
- 北京航空航天大学:Graph Search - a New Paradigm for Social Computing.pptx
- 西南民族大学:《软件需求分析与总体设计》课程教学资源(PPT课件讲稿)软件总体(概要)设计.ppt
- 东南大学:《数据结构》课程教学资源(PPT课件讲稿)第五章 树(主讲:方效林).ppt
- 中国科学技术大学:《网络信息安全 NETWORK SECURITY》课程教学资源(PPT课件讲稿)第十章 入侵检测系统(主讲:肖明军).ppt
- 中国科学技术大学:QuickPass系统的排队问题(PPT讲座,谢瑶).ppt
- 《工程计算软件》课程教学资源(PPT课件讲稿)第四章 Maple简介.ppt
- 山东大学:《微机原理及单片机接口技术》课程教学资源(PPT课件讲稿)第六章 中断(主讲:刘忠国).ppt
- 中国传媒大学(北京广播学院):《计算机网络》课程教学资源(PPT课件讲稿)第五章 网络层 The Network Layer.ppt
- Introduction to XML IR(PPT讲稿).ppt
- 《计算机系统》课程教学资源(PPT课件讲稿)第六章 设备管理 Devices Management.ppt
- 《Excel实用技术基础》课程教学资源(PPT课件讲稿)Excel 技术基础、数据管理.ppt
- 南京航空航天大学:《C++程序设计》课程教学资源(PPT课件)第1章 C++程序设计基础(主讲:陈哲).ppt
- 《计算机组成原理》课程教学资源(PPT课件讲稿)第6章 总线结构.ppt