三维计算机视觉 3D computer vision(基于卡尔曼滤波的运动结构)

3D computer vision Structure from motion using Kalman filter SFM Kalman V9a 1
SFM Kalman V9a 1 3D computer vision Structure from motion using Kalman filter

Aims To obtain structure and camera motion from an image sequence Utilize inter-picture dynamics of a sequence Such as constant speed acceleration of the camera etc SFMKalman vga 2
SFM Kalman V9a 2 Aims • To obtain structure and camera motion from an image sequence • Utilize inter-picture dynamics of a sequence – Such as constant speed, acceleration of the camera etc

Tracking methods Kalman filtering suitable for systems with Gaussian noise Condensation(or called particle filter) suitable for systems with Non-Gaussian noise SFMKalman vga
SFM Kalman V9a 3 Tracking methods • Kalman filtering, suitable for systems with Gaussian noise • Condensation (or called particle filter), suitable for systems with Non-Gaussian noise

Part O Basic concept of Kalman filter SFMKalman vga
SFM Kalman V9a 4 Part 0 Basic concept of Kalman filter

Introduction A system(e.g. radar tracking a plane)can be modelled by a system transition dynamic function using the Newtons' law (linear) Measurement may contain noise(assume Ga aussian Kalman filter predict and update the system to reduce the effect of noise SFMKalman vga
Introduction • A system (e.g. radar tracking a plane) can be modelled by a system transition dynamic function using the Newtons’ law (linear). • Measurement may contain noise (assume Gaussian) • Kalman filter predict and update the system to reduce the effect of noise. SFM Kalman V9a 5

System state and x=u, dynamic position, velocity/ Newtons law:lk=l4-1+l·△t xk is the state at time k Soxx= Axk_+o, where A k-l hence a is the motion model Q is system noise(by wind) K Li]1o 1t Z is measurement on the Ax+O du =-= velocit radar screen d t R is measurement noise Assume u>>h.soZ≈l Rad SFMKalman Vga scre
System state and dynamic • xk is the state at time k – xk=A*xk-1 – A is the motion model – Q is system noise (by wind) • Z is measurement on the radar screen, – R is measurement noise – Assume u>>h, so Zu SFM Kalman V9a 6 Ax Q Q u t u u u x t A x Ax Q where u u u t [position, velocity] u u dt du x u k k k k k k k k k k T T T = + + = = = = + = + = = = − − − − − 1 1 1 1 1 0 1 1 ,hence 0 1 1 So , Newtons' law : , [ , ] u = position z Radar screen velocity dt du u = = h

Can add acceleration if we want x=lu,u, u position, velocity, acceleration/ Newtons' lay:l=l421+i△+(△) SO x= Ax,+o where △M0.5(△7)2 A=01△t hence △t0.5(△1)ak-1 -1 Ax +o SFMKalman vga
Can add acceleration if we want • SFM Kalman V9a 7 ( ) ( ) ( ) Ax Q u u u t t t u u u x t t t A x Ax Q where u u u t u t [position, velocity acceleration] x u u u k k k k k k k k k k k k T T = + = = = = + = + + = = − − − − − − 1 1 1 1 2 2 1 2 1 0 0 1 0 1 1 0.5 ,hence 0 0 1 0 1 1 0.5 So , 2 1 Newtons' law : , [ , , ]

Kalman filter always predict and update to find the state of the plane x Kalman filter offers optimum prediction by considering the system and measurement noise eviiserror kerro下 ev = error △R tk(predicted at time k-1) At time k+1 At time k xk l(actual state at time k- SFM Kalman voa
Kalman filter SFM Kalman V9a 8 xk-1 (actual state at time k-1) xk At time k xk+1 At time k+1 ek-1=error • Always predict and update to find the state of the plane x • Kalman filter offers optimum prediction by considering the system and measurement noise ek=error ek+1=error ˆ (predicted at time 1) 1 x k- k− k x ˆ 1 ˆ k+ x

Part 1 Introduction to Kalman filter(KF)and Extended Kalman filters(EKF SFMKalman vga
SFM Kalman V9a 9 Part 1 Introduction to Kalman filter (KF) and Extended Kalman filters (EKF)

Kalman filter introduction B ased on An introduction to the kalman Filter Source Technical Report: TR95-041Year of Publication: 1995 Authors Greg Welch gary Bishop publisher university of north carolina at Chapel Hill Chapel Hill, NC, US (http://www.cs.unc.edu/welch/media/pdf/kalma n intro. pdf) SFM Kalman vga
SFM Kalman V9a 10 Kalman filter introduction • Based on • An Introduction to the Kalman FilterSourceTechnical Report: TR95-041 Year of Publication: 1995 Authors Greg Welch Gary Bishop Publisher University of North Carolina at Chapel Hill Chapel Hill, NC, US (http://www.cs.unc.edu/~welch/media/pdf/kalma n_intro.pdf)
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《计算机网络与因特网》课程教学资源(PPT课件)Part VII 广域网(简称WAN), 路由, 和最短路径.ppt
- The Art of Function Design -Measure and RKHS.ppt
- 大庆职业学院:《计算机网络技术基础》课程教学资源(PPT课件讲稿)第2章 数据通信的基础知识.ppt
- 香港浸会大学:C++ as a Better C; Introducing Object Technology.ppt
- 清华大学:《高级计算机网络 Advanced Computer Network》课程教学资源(PPT课件讲稿)Lecture 1 Introduction.pptx
- 《TCP/IP协议及其应用》课程教学资源(PPT课件)第1章 TCP/IP协议基础.ppt
- 香港理工大学:Artificial Neural Networks for Data Mining.ppt
- 安徽理工大学:《Linux开发基础 Development Foundation on Linux OS》课程资源(PPT课件讲稿)Section 4 Perl programming(赵宝).ppt
- 《网上开店实务》课程教学资源(PPT讲稿)学习情境1 网上开店创业策划.ppt
- 东南大学:《C++语言程序设计》课程教学资源(PPT课件讲稿)Chapter 10 Classes A Deeper Look(Part 2).ppt
- 广西医科大学:《计算机网络 Computer Networking》课程教学资源(PPT课件讲稿)Chapter 01 Introduction overview.pptx
- 《网络搜索和挖掘关键技术 Web Search and Mining》课程教学资源(PPT讲稿)Lecture 11 Probabilistic Information Retrieval.ppt
- 山东大学:《人机交互技术》课程教学资源(PPT课件讲稿)第3章 交互设备 3.5 显示设备 3.6 语音交互设备 3.7虚拟现实系统中的交互设备.ppt
- 东北大学:《可信计算基础》课程教学资源(PPT课件讲稿)第6章 TPM核心功能(主讲:周福才).pptx
- 媒体服务(PPT课件讲稿)Media Services.ppt
- 河南中医药大学(河南中医学院):《计算机网络》课程教学资源(PPT课件讲稿)第六章 应用层.pptx
- 中国科学技术大学:《计算机体系结构》课程教学资源(PPT课件讲稿)第6章 Data-Level Parallelism in Vector, SIMD, and GPU Architectures.ppt
- 南京大学:《编译原理》课程教学资源(PPT课件讲稿)第七章 运行时刻环境.ppt
- 《高级人工智能 Advanced Artificial Intelligence》教学资源(PPT讲稿)Lecture 7 Recurrent Neural Network.pptx
- 西安交通大学:《网络与信息安全》课程PPT教学课件(网络入侵与防范)第六章 网络入侵与防范——拒绝服务攻击与防御技术.ppt
- 河南中医药大学(河南中医学院):《计算机文化》课程教学资源(PPT课件讲稿)第七章 数据库技术(主讲:王哲).pptx
- 《单片机原理及应用》课程教学资源(PPT课件讲稿)第14章 单片机应用系统抗干扰与可靠性设计.ppt
- 北京航空航天大学:《数据挖掘——概念和技术(Data Mining - Concepts and Techniques)》课程教学资源(PPT课件讲稿)Chapter 01 Introduction.ppt
- 《单片机应用系统设计技术》课程教学资源(PPT课件讲稿)第7章 单片机外部扩展资源及应用.ppt
- 香港浸会大学:MPI - Communicators(PPT讲稿).ppt
- 电子工业出版社:《计算机网络》课程教学资源(第五版,PPT课件讲稿)第九章 无线网络.ppt
- 中国铁道出版社:《局域网技术与组网工程》课程教学资源(PPT课件讲稿)第2章 网络工程系统.ppt
- 自动语音识别(PPT讲稿)Automatic Speaker Recognition.pptx
- 南京大学:《编译原理》课程教学资源(PPT课件讲稿)第三章 词法分析.pptx
- 上海交通大学:人工智能的历史和启示——人机对弈作为案例.ppt
- 《计算机网络》课程教学资源(PPT课件讲稿)第三章 局域网与校园网设计(网络方案设计).ppt
- 广西外国语学院:《计算机网络》课程教学资源(PPT课件讲稿)第10章 应用层协议.ppt
- 《单片机原理及应用》课程教学资源_本科教学大纲汇编(电子信息工程专业).doc
- 上海交通大学:网络安全 Network Security(PPT讲稿,朱浩瑾).pptx
- 清华大学:Top-k String Similarity Search with Edit-Distance Constraints.pptx
- 普林斯顿大学:平衡查找树(PPT讲稿)New Balanced Search Trees.pptx
- 《MATLAB程序设计》课程教学资源(教学大纲)Matlab programming.doc
- 计算机硬件维护(PPT课件讲稿).ppt
- 南京大学:移动Agent系统支撑(PPT讲稿)Agent Mobility Software Agent.pptx
- 《程序设计语言》课程教学资源(PPT课件讲稿)第5章 函数式程序设计语言.ppt