Introduction to Text Mining 文本挖掘

Introduction to text Mining Thanks for Hongning Wang@UVas slides on Text Ming Courses, Slides are slightly modified by Lei chen
Introduction to Text Mining Thanks for Hongning Wang@UVa’s slides on Text Ming Courses, Slides are slightly modified by Lei Chen

What is"Text Mining"? Text mining also referred to as text data mining roughly equivalent to text analytics, refers to the process of deriving high-quality in formation from text. -wikipedia Another way to view text data mining is as a process of exploratory data analysis that leads to heretofore unknown information, or to answers for questions for which the answer is not currently known. -Hearst, 1999 CSoUVa CS6501: Text Mining
What is “Text Mining”? • “Text mining, also referred to as text data mining, roughly equivalent to text analytics, refers to the process of deriving high-quality information from text.” - wikipedia • “Another way to view text data mining is as a process of exploratory data analysis that leads to heretofore unknown information, or to answers for questions for which the answer is not currently known.” - Hearst, 1999 CS@UVa CS6501: Text Mining 2

Two different definitions of mining Goal-oriented (effectiveness driven) Any process that generates useful results that are non- obvious is called"mining Keywords: useful+ non-obvious Data isnt necessarily massive Method-oriented (efficiency driven) Any process that involves extracting information from massive data is called"mining Keywords: "massive"+"pattern Patterns aren' t necessarily useful CSoUVa CS6501: Text Mining
Two different definitions of mining • Goal-oriented (effectiveness driven) – Any process that generates useful results that are nonobvious is called “mining”. – Keywords: “useful” + “non-obvious” – Data isn’t necessarily massive • Method-oriented (efficiency driven) – Any process that involves extracting information from massive data is called “mining” – Keywords: “massive” + “pattern” – Patterns aren’t necessarily useful CS@UVa CS6501: Text Mining 3

Text mining around us Sentiment analysis 20 12 RAC E FO R ∥,GMh,%N 5 uT sonERa WE COLLECT 70,000 H Mn Romney wL。。 “心心 WIN SENTIMEN N THESE I。ufcE TO THE DAY ULFORL 3 CNNPOUTICALTICKER-.COMBLOGSGingrichstepsupsupportrRomney,predictMourdockwihsinindiana. CSoUVa CS6501: Text Mining
Text mining around us • Sentiment analysis CS@UVa CS6501: Text Mining 4

Text mining around us Document summarization efficiently m 「0c8 至 wledge technologies a ng otes u u make il ach Tie vision assets CSoUVa CS6501: Text Mining
Text mining around us • Document summarization CS@UVa CS6501: Text Mining 5

Text mining around us Restaurant/hotel recommendation Bodo's Bagels Hilton Times Square a Price Finder Hilton bleb 口= EXCI Anel any octan时 Daces ceea lose的 eaf of danehy ①63m Book on Ctrpdvaor Recommended Reviews 4.919 Reviews from our TripAdvisor Community CSoUVa CS6501: Text Mining
Text mining around us • Restaurant/hotel recommendation CS@UVa CS6501: Text Mining 6

Text mining around us Text analytics in financial services JUNE 6 MAY 18 Stock price JUNE 22 AUGUST 17 Facebook IPO settles at $25 Stock price peaks JULY 31 Facebook sentiment is atS33 Sentiment drops almost neutra shares reach a new low 52.1 pts previous lows MAY 25 of S19 Sentiment JULY 19 shortly sets a new followed low of 22 by stock DCM Facebook Sentiment Facebook Stock Price CSoUVa CS6501: Text Mining
Text mining around us • Text analytics in financial services CS@UVa CS6501: Text Mining 7

How to perform text mining? As computer scientists, we view it as Text Mining Data Mining t Text Data CSoUVa CS6501: Text Mining 8
How to perform text mining? • As computer scientists, we view it as – Text Mining = Data Mining + Text Data CS@UVa CS6501: Text Mining 8

Text mining v.S. NLP IR, DM How does it relate to data mining in general? How does it relate to computational linguistics? How does it relate to information retrieval? Finding Patterns Finding“ Nuggets” Novel Non-Novel General Non-textual data Database data-mining」 Exploratory queres Textual data Comp Text Mining ′s|S Information Ling retrieval CSoUVa CS6501: Text Mining
Text mining v.s. NLP, IR, DM… • How does it relate to data mining in general? • How does it relate to computational linguistics? • How does it relate to information retrieval? Finding Patterns Finding “Nuggets” Novel Non-Novel Non-textual data General data-mining Exploratory data analysis Database queries Textual data Computational Linguistics Information Text Mining retrieval CS@UVa CS6501: Text Mining 9

ext mining in genera Access Serve for Ir Sub-area of applications DM research Mining Filter Discover knowledge information Based on NLP/ML Add techniques organization Structure/Annotations CSoUVa CS6501: Text Mining
Text mining in general CS@UVa CS6501: Text Mining 10 Access Mining Organization Filter information Discover knowledge Add Structure/Annotations Serve for IR applications Based on NLP/ML techniques Sub-area of DM research
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《Managing XML and Semistructured Data》教学资源(PPT课件讲稿)Part 04 Compressing XML Data.ppt
- 《JAVA面向对象入门技术》教程教学资源(PPT课件讲稿)第二章 Java语言基础.ppt
- 北京大学:《项目成本管理》课程教学资源(PPT课件讲稿)项目范围计划(主讲:周立新).ppt
- 山东大学:《网站设计与建设》课程教学资源(PPT课件讲稿)第三部分 网站设计技术 第20章 MySQL数据库.ppt
- 程序设计工具(PPT课件讲稿)Software Program Tool.ppt
- 《Java Web应用开发技术与案例教程》教学资源(PPT讲稿)第7章 Java Web常用开发模式与案例.ppt
- 《面向对象程序设计》课程教学大纲(适用专业:信息与计算科学).pdf
- 《编译技术》课程教学资源(PPT课件讲稿)第六章 运行时存储空间的组织和管理.ppt
- 沈阳理工大学:《计算机网络》课程教学资源(PPT课件讲稿)第2章 IP技术.ppt
- 香港科技大学:Record Linkage for Big Data.pptx
- 中国科技大学计算机系:《黑客反向工程》课程教学资源(PPT课件讲稿)黑客反向工程导论(陈凯明).ppt
- 《单片机应用技术》课程PPT教学课件(C语言版)第10章 单片机测控接口.ppt
- 《计算机操作系统》课程教学资源(PPT课件讲稿)第四章 存储器管理.ppt
- 《计算机网络与因特网 Computer Networks and Internets》课程教学资源(PPT课件讲稿)第二讲 互联网应用软件.ppt
- 《C语言程序设计》课程电子教案(PPT课件讲稿)第七章 数组.ppt
- Analysis of Algorithms(PPT讲稿)Data Structures and Data Management.ppt
- 《计算机组成原理》课程教学资源(PPT课件讲稿)第3章 计算机的算术运算.pptx
- 中国科学技术大学:《信号与图像处理基础 Signal and Image Processing》课程教学资源(PPT课件讲稿)图像压缩编码 Image Compression.pptx
- 中国科学技术大学:《信号与图像处理基础 Signal and Image Processing》课程教学资源(PPT课件讲稿)数字图像处理基础 Basics of Digital Image Processing.pptx
- 中国科学技术大学:云计算及安全(PPT讲稿)Cloud Computing & Cloud Security.pptx
- 北京大学:烟花算法的变异算子(PPT讲稿)Mutation Operators of Fireworks Algorithm.pptx
- 中国科学技术大学:《计算机体系结构》课程教学资源(PPT课件讲稿)绪论、第1章 量化设计与分析基础(主讲:周学海).ppt
- 清华大学出版社:《计算机应用基础实例教程》课程教学资源(PPT课件讲稿,第二版,共七章,主编:吴霞,制作:李晓新).ppt
- 《计算机算法设计与分析》课程教学资源(PPT课件)第8章回溯法.ppt
- 白城师范学院:《数据库系统概论 An Introduction to Database System》课程教学资源(PPT课件讲稿)第二章 关系数据库(2.1-2.3).ppt
- 《操作系统》课程教学资源(PPT课件讲稿)实时调度 Real-Time Scheduling.ppt
- 四川大学:《操作系统 Operating System》课程教学资源(PPT课件讲稿)Chapter 6 Concurrency - Deadlock(死锁)and Starvation(饥饿).ppt
- 《网络搜索和挖掘关键技术 Web Search and Mining》课程教学资源(PPT讲稿)Lecture 12 Language Models.ppt
- Progress of Concurrent Objects with Partial Methods.pptx
- 《编译原理与技术》课程教学资源(PPT课件讲稿)代码优化.ppt
- 《单片机应用技术》课程PPT教学课件(C语言版)第3章 MCS-51指令系统及汇编程序设计.ppt
- 《数据结构》课程教学资源(PPT课件讲稿)第八章 图.ppt
- 同济大学:《大数据分析与数据挖掘 Big Data Analysis and Mining》课程教学资源(PPT课件讲稿)Platforms for Big Data Mining(主讲:饶卫雄).ppt
- 《计算机网络》课程教学资源(PPT讲稿)网络安全(访问控制、加密、防火墙).ppt
- 水平集方法与图像分割 Level set method and image segmentation.pptx
- 北京师范大学:《计算机文化基础》课程教学资源(PPT课件讲稿)08 网页制作基础知识(赵国庆).ppt
- 《C语言程序设计》课程教学资源(PPT讲稿)第1章 程序设计和C语言.pptx
- 《计算机组装与维护》课程教学资源(PPT课件讲稿)第十一章 计算机数据恢复技术.ppt
- 贵州大学:计算机应用基础(PPT课件讲稿)计算机基础知识.pdf
- 《计算导论与程序设计》课程教学资源(PPT课件讲稿)Chap 5 函数.ppt