中国科学技术大学:Decentralized Jointly Sparse Optimization by Reweighted Lq Minimization

Decentralized Jointly Sparse Optimization by Reweighted Lq Minimization Qing Ling Department of Automation University of Science and Technology of China Joint work with Zaiwen Wen(SJTU)and Wotao Yin(RICE) 2012/09/05 1
1 Decentralized Jointly Sparse Optimization by Reweighted Lq Minimization Qing Ling Department of Automation University of Science and Technology of China Joint work with Zaiwen Wen (SJTU) and Wotao Yin (RICE) 2012/09/05

A brief introduction to my research interest optimization and control in networked multi-agent systems autonomous agents collect data process data Sodo 回图包 communicate problem:how to efficiently accomplish in-network optimization and control tasks through collaboration of agents? 2
2 A brief introduction to my research interest optimization and control in networked multi-agent systems autonomous agents - collect data - process data - communicate problem: how to efficiently accomplish in-network optimization and control tasks through collaboration of agents?

Large-scale wireless sensor networks:decentralized signal processing,node localization,sensor selection blind anchor how to localize blinds with anchors? how to fuse big sensory data? e.g.structural health monitoring difficulty in data transmission → decentralized optimization without any fusion center how to assign sensors to targets? 3
3 Large-scale wireless sensor networks: decentralized signal processing, node localization, sensor selection … how to fuse big sensory data? e.g. structural health monitoring how to localize blinds with anchors? blind anchor how to assign sensors to targets? difficulty in data transmission → decentralized optimization without any fusion center

Computer/server networks with big data:collaborative data mining new challenges in the big data era big data is stored in distributed computers/servers data transmission is prohibited due to bandwidth/privacy/... computers/servers collaborate to do data mining distributed/decentralized optimization 4
4 Computer/server networks with big data: collaborative data mining new challenges in the big data era - big data is stored in distributed computers/servers - data transmission is prohibited due to bandwidth/privacy/… - computers/servers collaborate to do data mining distributed/decentralized optimization

Wireless sensor and actuator networks:with application in large-scale greenhouse control wireless sensing temperature humidity wireless actuating circulating fan wet curtain disadvantages of traditional centralized control communication burden in collecting distributed sensory data lack of robustness due to packet-loss,time-delay,.. decentralized control system design 5
5 Wireless sensor and actuator networks: with application in large-scale greenhouse control decentralized control system design wireless sensing - temperature - humidity - … wireless actuating - circulating fan - wet curtain - … disadvantages of traditional centralized control - communication burden in collecting distributed sensory data - lack of robustness due to packet-loss, time-delay, …

Recent works wireless sensor networks decentralized signal processing with application in SHM decentralized node localization using SDP and SOCP decentralized sensor node selection for target tracking collaborative data mining decentralized approaches to jointly sparse signal recovery decentralized approaches to matrix completion wireless sensor and actuator networks modeling,hardware design,controller design,prototype theoretical issues convergence and convergence rate analysis 6
6 Recent works wireless sensor networks - decentralized signal processing with application in SHM - decentralized node localization using SDP and SOCP - decentralized sensor node selection for target tracking collaborative data mining - decentralized approaches to jointly sparse signal recovery - decentralized approaches to matrix completion wireless sensor and actuator networks - modeling, hardware design, controller design, prototype theoretical issues - convergence and convergence rate analysis

Decentralized Jointly Sparse Optimization by Reweighted Lq Minimization Qing Ling Department of Automation University of Science and Technology of China Joint work with Zaiwen Wen(SJTU)and Wotao Yin(RICE) 2012/09/05 7
7 Decentralized Jointly Sparse Optimization by Reweighted Lq Minimization Qing Ling Department of Automation University of Science and Technology of China Joint work with Zaiwen Wen (SJTU) and Wotao Yin (RICE) 2012/09/05

Outline Background decentralized jointly sparse optimization with applications Roadmap nonconvex versus convex,difficulty in decentralized computing Algorithm development successive linearization,inexact average consensus Simulation and conclusion 8
8 Outline ❑ Background ❑ decentralized jointly sparse optimization with applications ❑ Roadmap ❑ nonconvex versus convex, difficulty in decentralized computing ❑ Algorithm development ❑ successive linearization, inexact average consensus ❑ Simulation and conclusion

Background(I):jointly sparse optimization Structured signals A sparse signal:only few elements are nonzero Jointly sparse signals:sparse,with the same nonzero supports zeros x(⊙∈RN nonzeros X=x四)x②).…x(] Jointly sparse optimization:to recover X from linear measurements y@=A@)x+e(∈RM,A)∈RMxN,e国∈RM ↓ measurement matrix measurement noise 9
9 Background (I): jointly sparse optimization ◼ Structured signals ⚫ A sparse signal: only few elements are nonzero ⚫ Jointly sparse signals: sparse, with the same nonzero supports ◼ Jointly sparse optimization: to recover X from linear measurements nonzeros zeros measurement matrix measurement noise

Background (II):decentralized jointly sparse optimization Decentralized computing in a network Distributed data in distributed agents no fusion center e Consideration of privacy,difficulty in data collection,etc Decentralized jointly sparse optimization Goal:agent i has y(i)and A(i),to recover x(i)through collaboration 10
10 Background (II): decentralized jointly sparse optimization ◼ Decentralized computing in a network ⚫ Distributed data in distributed agents & no fusion center ⚫ Consideration of privacy, difficulty in data collection, etc Goal: agent i has y(i) and A(i), to recover x(i) through collaboration ◼ Decentralized jointly sparse optimization
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 安顺学院:《大学计算机基础》课程电子教案(PPT课件讲稿,共十章,含实验教学,Windows 7版).pps
- 安顺学院:《大学计算机基础》课程教学资源(PPT课件讲稿,共八章,张汗洁,Windows XP版).pptx
- 安顺学院:《计算机应用基础 Fundamentals of Computer》课程教学资源(PPT课件讲稿)Word 文档的高级操作(Word 2010目录及邮件合并).pptx
- 安顺学院:《计算机应用基础 Fundamentals of Computer》课程教学资源(期末考试模拟题).doc
- 安顺学院:《数据科学与大数据技术》专业学位授权审核汇报PPT(田建勇).pptx
- 安顺学院:《计算机应用基础 Fundamentals of Computer》课程教学资源(PPT课件讲稿)第九章 信息安全与职业道德.pptx
- 安顺学院:《计算机应用基础 Fundamentals of Computer》课程教学资源(PPT课件讲稿)第八章 常用工具软件.pptx
- 安顺学院:《计算机应用基础 Fundamentals of Computer》课程教学资源(PPT课件讲稿)第七章 演示文稿软件PowerPoint 2010.pptx
- 安顺学院:《计算机应用基础 Fundamentals of Computer》课程教学资源(PPT课件讲稿)第六章 电子表格软件Excel 2010.pptx
- 安顺学院:《计算机应用基础 Fundamentals of Computer》课程教学资源(PPT课件讲稿)第五章 文档编辑软件Word 2010.pptx
- 安顺学院:《计算机应用基础 Fundamentals of Computer》课程教学资源(PPT课件讲稿)第四章 计算机网络与因特网.pptx
- 安顺学院:《计算机应用基础 Fundamentals of Computer》课程教学资源(PPT课件讲稿)第三章 操作系统基础.pptx
- 安顺学院:《计算机应用基础 Fundamentals of Computer》课程教学资源(PPT课件讲稿)第二章 计算机系统的构成.pptx
- 安顺学院:《计算机应用基础 Fundamentals of Computer》课程教学资源(PPT课件讲稿)第一章 计算机与信息技术基础(人民邮电出版社).pptx
- 安顺学院:《计算机应用基础 Fundamentals of Computer》课程教学资源(PPT课件讲稿)第十章 计算机新技术及应用.pptx
- 中国水利水电出版社:21世纪高职高专规划教材《计算机应用基础》课程电子教案(PPT教学课件)第5章 电子表格软件Excel 2003.ppt
- 中国水利水电出版社:21世纪高职高专规划教材《计算机应用基础》课程电子教案(PPT教学课件)第4章 文字处理软件 Word 2003.ppt
- 中国水利水电出版社:21世纪高职高专规划教材《计算机应用基础》课程电子教案(PPT教学课件)第3章 计算机操作系统(OS).ppt
- 中国水利水电出版社:21世纪高职高专规划教材《计算机应用基础》课程电子教案(PPT教学课件)第7章 计算机网络及Internet应用.ppt
- 中国水利水电出版社:21世纪高职高专规划教材《计算机应用基础》课程电子教案(PPT教学课件)第6章 PowerPoint 2003.ppt
- 《电子商务设计师教程》教材PDF电子书(第3版,前两章)第1章 电子商务概述、第2章 电子商务信息安全(2.1-2.2.3).pdf
- 北京大学:《数据分析工具和实践》课程教学资源(讲稿)00 课程简介 Data Analysis Tools and Practice(Using R)R语言(主讲:孙惠平).pdf
- 北京大学:《数据分析工具和实践》课程教学资源(讲稿)01 R简介.pdf
- 北京大学:《数据分析工具和实践》课程教学资源(讲稿)02 R数据对象(一).pdf
- 北京大学:《数据分析工具和实践》课程教学资源(讲稿)03 R数据对象(二).pdf
- 北京大学:《数据分析工具和实践》课程教学资源(讲稿)04 R编程结构.pdf
- 北京大学:《数据分析工具和实践》课程教学资源(讲稿)05 课程复习(一).pdf
- 北京大学:《数据分析工具和实践》课程教学资源(讲稿)06 R基本图形(一).pdf
- 北京大学:《数据分析工具和实践》课程教学资源(讲稿)07 R基本图形(二).pdf
- 北京大学:《数据分析工具和实践》课程教学资源(讲稿)08 ggplot2画图(一).pdf
- 北京大学:《数据分析工具和实践》课程教学资源(讲稿)09 ggplot2画图(二).pdf
- 北京大学:《数据分析工具和实践》课程教学资源(讲稿)10 课程复习(二).pdf
- 高等学校计算机应用规划教材:《SQL Server 2019 数据库教程》教学资源(PDF电子书)第1章 数据库基础.pdf
- 高等学校计算机应用规划教材:《HTML5+CSS3 网页设计基础教程》教学资源(PDF电子书)第1章 Web开发新时代.pdf
- 西安电子科技大学:神经网络与模糊系统(PPT讲稿)Neural Networks & Fuzzy System.ppt
- 《Autodesk AutoCAD 2004》课程教学资源:PPT课件讲稿(前11章).ppt
- 成都东软学院:《嵌入式系统原理与接口技术》课程教学资源(PPT课件讲稿)第5章 ARM接口设计技术(杨宗德).ppt
- 山东大学:《化工制图》课程教学资源(PPT讲稿)第十二章 计算机绘图软件简介.pptx
- 中国科学技术大学:《嵌入式操作系统 Embedded Operating Systems》课程教学资源(PPT课件讲稿)进程.ppt
- 中国科技大学计算机系:《黑客反向工程》课程教学资源(作业习题)历年黑客反向工程作业题目选编.docx