中国高校课件下载中心 》 教学资源 》 大学文库

信号与系统(英文版)_4 The continuous time Fourier transform

文档信息
资源类别:文库
文档格式:PPT
文档页数:28
文件大小:438KB
团购合买:点击进入团购
内容简介
信号与系统(英文版)_4 The continuous time Fourier transform
刷新页面文档预览

4 The continuous time Fourier transform 4. The Continuous time Fourier Transform 4.1 Representation of aperiodic signals The Continuous time fourier transform 4.1.1 Development of the Fourier transform representation of the continuous time Fourier transform

4 The continuous time Fourier transform 4.1 Representation of Aperiodic signals: The Continuous time Fourier Transform 4.1.1 Development of the Fourier transform representation of the continuous time Fourier transform 4. The Continuous time Fourier Transform

4 The continuous time Fourier transform (1)Example(From Fourier series to Fourier transform) x(t) 口∏,,∏ T 2 A 4o0

4 The continuous time Fourier transform (1) Example ( From Fourier series to Fourier transform )

4 The continuous time Fourier transform 2)Fourier transform representation of Aperiodic sIgnal For periodic signal x(t) ae TJr x(te-jkootdt For aperiodic signal x(t x()=1im()或X()-120>x()

4 The continuous time Fourier transform (2) Fourier transform representation of Aperiodic signal        = =   − + =− T j k t k k j k t k x t e dt T a x t a e 0 0 ( ) 1 ~ ( ) ~   For periodic signal : ( ) ~ x t For aperiodic signal x(t) : ( ) ( ) ~ ( ) ~ ( ) x t limx t x t x t T T = ⎯ → ⎯ → → 或

4 The continuous time Fourier transform T 2T-7T10T1T

4 The continuous time Fourier transform T→

4 The continuous time Fourier transform When t>∞,x()-32,x() 丌 do T→∞ So a,T (t)e o dt=X(o (t)=lin foot T→>∞ lim Xoko roOt ∑X(kOo)e/m 7 Xoe

4 The continuous time Fourier transform When T→ ,      ⎯ ⎯→ = ⎯ ⎯→ ⎯ ⎯→ → → → T T T k d T x t x t 0 0 2 ( ) ( ) ~ So ( ) ( )  a T x t e dt X j j t k = =  + − −     + − + =− → + =− → + =− → = = = =             X j e d X j k e e T X j k x t a e j t k j k t k j k t T k j k t k T ( ) 2 1 2 lim ( ) ( ) lim ( ) lim 0 0 0 0 0 0 0

4 The continuous time Fourier transform Fourier transform X(O x(te o di (t) X(oeo do 2元 or x(t>Xo) Relation between fourier series and Fourier transform X(lasko (Periodic signal X(o=T ak ko.so(Aperiodic signal

4 The continuous time Fourier transform Fourier transform:      = =   + − + − −       x t X j e d X j x t e dt j t j t ( ) 2 1 ( ) ( ) ( ) Relation between Fourier series and Fourier transform:      =  = = = ( ) 0 0 ( ) | ( )| 1 Aperiodic signal (Periodic signal) k k k k X j T a X j T a       or x(t) X( j) ⎯F →

4 The continuous time Fourier transform X T X(w) 2T T

4 The continuous time Fourier transform

4 The continuous time Fourier transform 4.1.2 Convergence of Fourier transform Dirichlet conditions: (1)x(t is absolutely integrable x(t dt <oo (2)x(t have a finite number of maxima and minima within any finite interval (3)x(t have a finite number of discontinuity within any finite interval. Furthermore, each of these discontinuities must be finite

4 The continuous time Fourier transform 4.1.2 Convergence of Fourier transform Dirichlet conditions: (1) x(t) is absolutely integrable. (2) x(t) have a finite number of maxima and minima within any finite interval. (3) x(t) have a finite number of discontinuity within any finite interval. Furthermore, each of these discontinuities must be finite.    + − | x(t)| dt

4 The continuous time Fourier transform 4.1.3 Examples of Continuous time Fourier Transform EXample4.14243444.5 EXample(1) (1)=e(>X(j0)=2n6(0-00 Solution:x(t)=X()eiondo 2(O-Ooeloda 2元 EXample(2) x(t)=CosO>X(0)=7(0-O0)+x(O+O0

4 The continuous time Fourier transform 4.1.3 Examples of Continuous time Fourier Transform Example 4.1 4.2 4.3 4.4 4.5 Example (1) ( ) ( ) 2 ( )0 0       x t = e ⎯→ X j = − j t F Example (2) ( ) cos ( ) ( ) ( ) = 0 ⎯→  =   −0 +   +0 x t t X j F   + − + − = − =             e e d Solution x t X j e d j t j t j t 2 ( ) 2 1 ( ) 2 1 : ( ) 0 0

4 The continuous time Fourier transform 4. 2 The Fourier Transform for Periodic Signal Periodic signal x(t)= rEeked ko ”>2(O-k0) thus x(1)=∑ae")X(jo)=∑a2r(a-km) EXample 4.6 4.7 4.8

4 The continuous time Fourier transform 4.2 The Fourier Transform for Periodic Signal Periodic signal: 2 ( )0 0      e k j k t F ⎯→ − thus  + =− = k j k t x t ak e 0 ( )    + =− + =− = ⎯→ = − k k F k j k t k x(t) a e X ( j ) a 2 ( k ) 0 0       Example 4.6 4.7 4.8

共28页,试读已结束,阅读完整版请下载
刷新页面下载完整文档
VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
相关文档