信号与系统(英文版)_3 Fourier Series Representation of Periodic Signals

3 Fourier Series Representation of Periodic Signals 3. Fourier Series Representation of Periodic Signal Jean Baptiste Joseph Fourier born in 1768 in france 1807, periodic signal could be represented by sinusoidal series 1829, Dirichlet provided precise conditions 1960s, Cooley and tukey discovered fast Fourier transform
3 Fourier Series Representation of Periodic Signals 3.Fourier Series Representation of Periodic Signal Jean Baptiste Joseph Fourier, born in 1768, in France. 1807,periodic signal could be represented by sinusoidal series. 1829,Dirichlet provided precise conditions. 1960s,Cooley and Tukey discovered fast Fourier transform

3 Fourier Series Representation of Periodic Signals 3. 2 The Response of LTI Systems to Complex Exponentials (1 Continuous time LTI system x(t=es y(t=H(s)est h (t y(t)=x(1)*h(t Tn(TaT on es(n(t az=estf+oo h(red H(S H(s)=h(r)e dr system function
3 Fourier Series Representation of Periodic Signals 3.2 The Response of LTI Systems to Complex Exponentials (1) Continuous time LTI system h(t) x(t)=est y(t)=H(s)est ( ) ( ) ( ) ( ) ( )* ( ) ( ) ( ) ( ) e H s e h d e h e d y t x t h t x t h d s t s t s t s = = = = = − + − − + − − + − + − − = H s h e d s ( ) ( ) ( system function )

3 Fourier Series Representation of Periodic Signals (2)Discrete time LTI system yIn]=H(zzn hnI y=*小=∑xn一 ∑=k]="∑ "H(=) H()=∑hkF system function
3 Fourier Series Representation of Periodic Signals (2) Discrete time LTI system h[n] x[n]=zn y[n]=H(z)zn ( ) [ ] [ ] [ ] [ ]* [ ] [ ] [ ] ( ) z H z z h k z z h k y n x n h n x n k h k n k n k k n k k = = = = = − + =− − + =− − + =− k k H z h k z − + =− ( ) = [ ] ( system function )

3 Fourier Series Representation of Periodic Signals (3)Input as a combination of Complex Exponentials Continuous time Lti system x()=∑ae y()=∑akH(Sk)e Discrete time LTI system x{m]=∑ yn=∑akH(=k)=k EXample 3.1
3 Fourier Series Representation of Periodic Signals (3) Input as a combination of Complex Exponentials Continuous time LTI system: = = = = N k s t k k N k s t k k k y t a H s e x t a e 1 1 ( ) ( ) ( ) Discrete time LTI system: = = = = N k n k k k N k n k k y n a H z z x n a z 1 1 [ ] ( ) [ ] Example 3.1

3 Fourier Series Representation of Periodic Signals 3.3 Fourier Series Representation of Continuous-time Periodic Signals 3.3. 1 Linear Combinations of harmonically Related Complex exponentials (1) General Form The set of harmonically related complex exponentials ΦA(t) ik(2T/T) k=0±1±2 Fundamental period: T( common period
3 Fourier Series Representation of Periodic Signals 3.3 Fourier Series Representation of Continuous-time Periodic Signals (1) General Form k (t) = e j k0 t = e j k(2 /T )t , k = 0,1,2 3.3.1 Linear Combinations of Harmonically Related Complex Exponentials The set of harmonically related complex exponentials: Fundamental period: T ( common period )

3 Fourier Series Representation of Periodic Signals joo, e aot: Fundamental components e/. e 120ol: Second harmonic components JNOot D- jNOot: Nth harmonic components So, arbitrary periodic signal can be represented as ∞e (Fourier series Example 3.2
3 Fourier Series Representation of Periodic Signals So, arbitrary periodic signal can be represented as j t j t e e 0 0 , − : Fundamental components j t j t e e 0 0 2 2 , − : Second harmonic components jN t jN t e e 0 0 , − : Nth harmonic components + =− = k j k t x t ak e 0 ( ) ( Fourier series ) Example 3.2

3 Fourier Series Representation of Periodic Signals (2) Representation for Real Signal Real periodic signal: X(t=X(t 在¢ So ak-a k x()=a+∑ koot+a-k ∑ 2 Relate] Let()ak=Ake aaOt (koot+Bk) x(t)=ao+>2Ak cos(koot+0k)
3 Fourier Series Representation of Periodic Signals (2) Representation for Real Signal Real periodic signal: x(t)=x*(t) So a*k=a-k + =− = k j k t x t ak e 0 ( ) + = − − + = = + = + + 1 0 1 0 2Re[ ] ( ) [ ] 0 0 0 k j k t k j k t k k j k t k a a e x t a a e a e Let (A) ( ) 0 0 , k k j k t k j k t k j k k a A e a e A e + = = + = = + + 1 0 0 ( ) 2 cos( ) k k k x t a A k t

3 Fourier Series Representation of Periodic Signals Let(A)ak=Ager, aR e koof=Age(kooftR) x(t)=ao+>2Ak cos(koot+8%) (B)ak=B+jCk x(t)=a0+2>[Bk cos koot-Ck sin koot]
3 Fourier Series Representation of Periodic Signals Let (A) ( ) 0 0 , k k j k t k j k t k j k k a A e a e A e + = = + = = + + 1 0 0 ( ) 2 cos( ) k k k x t a A k t (B) k k k a = B + jC ( ) 2 [ cos sin ] 0 1 0 0 x t a B k t C k t k k k + = = + −

3 Fourier Series Representation of Periodic Signals 3.3.2 Determination of the Fourier series Representation of a Continuous-time periodic Signal koot dk(t)=e2x)y,k=0,±1,+2 Orthogonal function set Determining the coefficient by orthogonality Multiply two sides by e jnogt x()em=∑ake(k-n)o
3 Fourier Series Representation of Periodic Signals k (t) = e j k(2 /T )t , k = 0,1,2 3.3.2 Determination of the Fourier Series Representation of a Continuous-time Periodic Signal + =− = k j k t x t ak e 0 ( ) ( Orthogonal function set ) Determining the coefficient by orthogonality: ( Multiply two sides by ) + =− − − = k j k n t k j n t x t e a e 0 0 ( ) ( ) jn t e − 0

3 Fourier Series Representation of Periodic Signals k-n) T. k O.k≠n 「x()emdh=∑ ak je/ck-moola 「,x()e Fourier Series Representation x(t ( Synthesis equation TJrx(r)ejkoo' dt(Analysis equation)
3 Fourier Series Representation of Periodic Signals Fourier Series Representation: = = − k n T k n e dt T j k n t 0, , 0 ( ) x t e dt a e dt ak T k T j k n t k T j n t = = + =− − 0 − 0 ( ) ( ) − = T j n t n x t e dt T a 0 ( ) 1 = = − + =− T j k t k k j k t k x t e dt Analysis equation T a x t a e Synthesis equation ( ) ( ) 1 ( ) ( ) 0 0
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 信号与系统(英文版)_2 Linear Time-Invariant Systems.ppt
- 信号与系统(英文版)_1 Signal and System.ppt
- 电子科技大学《数字信号处理》英文PPT课件:Chapter 4 Frequency-domain Representation of LTI Discrete-Time Systems.ppt
- 电子科技大学《数字信号处理》英文PPT课件:Chapter 9 Analysis of Finite Wordlength Effects.ppt
- 电子科技大学《数字信号处理》英文PPT课件:Chapter 7 Digital Filter Design.ppt
- 电子科技大学《数字信号处理》英文PPT课件: Chapter 6 Digital Filter Structures.ppt
- 电子科技大学《数字信号处理》英文PPT课件:Chapter 5 Digital Processing of Continuous-Time- Signals.ppt
- 电子科技大学《数字信号处理》英文PPT课件: Chapter 3 Transform-Domain Representation of Discrete-Time Signals.ppt
- 电子科技大学《数字信号处理》英文PPT课件:Chapter 2 Discrete-Time Signals and Systems.ppt
- 电子科技大学《数字信号处理》英文PPT课件:Chapter 1 Continuous--time Signals and Systems.ppt
- 电子科技大学《数字信号处理》英文PPT课件:Introduction.ppt
- 《电路与模拟电子技术》课程教学资源(PPT课件讲稿)第9章 直流稳压电源.ppt
- 《电路与模拟电子技术》课程教学资源(PPT课件讲稿)第8章 负反馈放大器与集成运算放大器 8.3 集成运算放大电路.ppt
- 《电路与模拟电子技术》课程教学资源(PPT课件讲稿)第8章 负反馈放大器与集成运算放大器 8.1 负反馈放大器 8.2 差分放大器.ppt
- 《电路与模拟电子技术》课程教学资源(PPT课件讲稿)第7章 基本放大电路(功率放大电路).ppt
- 《电路与模拟电子技术》课程教学资源(PPT课件讲稿)第7章 基本放大电路(其他放大电路).ppt
- 《电路与模拟电子技术》课程教学资源(PPT课件讲稿)第7章 基本放大电路(共发射极放大电路).ppt
- 《电路与模拟电子技术》课程教学资源(PPT课件讲稿)第6章 半导体器件.ppt
- 《电路与模拟电子技术》课程教学资源(PPT课件讲稿)第4章 三相交流电路 第5章 电路的暂态分析.ppt
- 《电路与模拟电子技术》课程教学资源(PPT课件讲稿)第3章 单相正弦交流电路.ppt
- 信号与系统(英文版)_4 The continuous time Fourier transform.ppt
- 信号与系统(英文版)_5 The discrete-time Fourier transform.ppt
- 信号与系统(英文版)_6. Time and Frequency Characterization of Signals and Systems.ppt
- 信号与系统(英文版)_7. Sampling.ppt
- 信号与系统(英文版)_8 Communication systems.ppt
- 信号与系统(英文版)_9 The Laplace Transform.ppt
- 高职系列教材:《电视技术》课程电子教案(PPT教学课件)封面及目录.ppt
- 高职系列教材:《电视技术》课程电子教案(PPT教学课件)第10章 电视机电源电路.ppt
- 高职系列教材:《电视技术》课程电子教案(PPT教学课件)第11章 彩色电视机遥控系统及整机分析.ppt
- 高职系列教材:《电视技术》课程电子教案(PPT教学课件)第12章 单片机芯与大屏幕彩色电视机.ppt
- 高职系列教材:《电视技术》课程电子教案(PPT教学课件)第13章 电视新技术.ppt
- 高职系列教材:《电视技术》课程电子教案(PPT教学课件)第1章 广播电视的基本知识.ppt
- 高职系列教材:《电视技术》课程电子教案(PPT教学课件)第2章 黑白电视的基本原理.ppt
- 高职系列教材:《电视技术》课程电子教案(PPT教学课件)第3章 彩色电视的基本原理.ppt
- 高职系列教材:《电视技术》课程电子教案(PPT教学课件)第4章 高频调谐器.ppt
- 高职系列教材:《电视技术》课程电子教案(PPT教学课件)第5章 图像中频通道.ppt
- 高职系列教材:《电视技术》课程电子教案(PPT教学课件)第6章 伴音通道.ppt
- 高职系列教材:《电视技术》课程电子教案(PPT教学课件)第7章 同步扫描电路分析.ppt
- 高职系列教材:《电视技术》课程电子教案(PPT教学课件)第8章 PAL制解码器.ppt
- 高职系列教材:《电视技术》课程电子教案(PPT教学课件)第9章 彩色显像管的结构及其附属电路.ppt