电子科技大学《数字信号处理》英文PPT课件:Chapter 4 Frequency-domain Representation of LTI Discrete-Time Systems

Chapter 4 F Frequency-domain Representation of LTI e Discrete-Time Systems
Chapter 4 Frequency-domain Representation of LTI Discrete-Time Systems

84.1 LTI Discrete-Time Systems in the Transform domain Such transform-domain representations provide additional insight into the behavior of such systems It is easier to design and implement these systems in the transform-domain for certain applications 一· We consider now the use of the dtft and the z-transform in developing the transform domain representations of an Lti system
§4.1 LTI Discrete-Time Systems in the Transform Domain • Such transform-domain representations provide additional insight into the behavior of such systems • It is easier to design and implement these systems in the transform-domain for certain applications • We consider now the use of the DTFT and the z-transform in developing the transformdomain representations of an LTI system

84.1 LTI Discrete-Time Systems in the Transform domain In this course we shall be concerned with lti discrete-time systems characterized by linear constant coefficient difference equations of the form: ∑dky{n-k]=∑pkxn-k] k=0
§4.1 LTI Discrete-Time Systems in the Transform Domain • In this course we shall be concerned with LTI discrete-time systems characterized by linear constant coefficient difference equations of the form: = = − = − M k k N k k d y n k p x n k 0 0 [ ] [ ]

84.1 LTI Discrete-Time Systems in the Transform domain a. Applying the dtft to the diffe erence equation and making use of the linearity and the time invariance properties we arrive at the input- output relation in the transform-domain as k ≌ evoke(eo k Pk Y(e1) k=0 e where Y(eo)and x(eo) are the dfts of yin and x n, respectively
§4.1 LTI Discrete-Time Systems in the Transform Domain • Applying the DTFT to the difference equation and making use of the linearity and the timeinvariance properties we arrive at the inputoutput relation in the transform-domain as ( ) ( ) 0 0 = − = − = j M k j k k j N k j k k d e Y e p e X e where Y(ej) and X(ej) are the DTFTs of y[n] and x[n], respectively

84.1 LTI Discrete-Time Systems in the Transform domain In developing the transform-domain representation of the difference equation, it has been tacitly assumed that X( Jo) and Y(ejo ) exist The previous equation can be alternately written as k e k y(e0)=∑pk e Jok X(e/) k=0 k=0
§4.1 LTI Discrete-Time Systems in the Transform Domain • In developing the transform-domain representation of the difference equation, it has been tacitly assumed that X(ej) and Y(ej) exist • The previous equation can be alternately written as ( ) ( ) 0 0 = − = − = j M k j k k j N k j k k d e Y e p e X e

84.1 LTI Discrete-Time Systems in the Transform domain difference equation and making use or the e Applying the z-transform to both sides of the linearity and the time-invariance properties we arrive at ∑dkz-(z)=∑ PkE X() k=0 k=0 where y(z and x(z denote the z-transforms of yIn and xn with associated ROCs, respectively
§4.1 LTI Discrete-Time Systems in the Transform Domain • Applying the z-transform to both sides of the difference equation and making use of the linearity and the time-invariance properties we arrive at d z Y(z) p z X(z) M k k k N k k k = − = − = 0 0 where Y(z) and X(z) denote the z-transforms of y[n] and x[n] with associated ROCs, respectively

84.1 LTI Discrete-Time Systems in the Transform domain A more convenient form of the z-domain representation of the difiference equation is given by ∑4k=-k|y(=)=∑pk=-kX() k=0 k=0
§4.1 LTI Discrete-Time Systems in the Transform Domain • A more convenient form of the z-domain representation of the difference equation is given by d z Y(z) p z X(z) M k k k N k k k = = − = − 0 0

§4.2 The Frequency Response Most discrete-time signals encountered in practice can be represented as a linear combination of a very large, maybe infinite number of sinusoidal discrete time signals of dififerent angular frequencies Thus, knowing the response of the lti system to a single sinusoidal signal, we can determine its response to more complicated signals by making use of the superposition property
§4.2 The Frequency Response • Most discrete-time signals encountered in practice can be represented as a linear combination of a very large, maybe infinite, number of sinusoidal discretetime signals of different angular frequencies • Thus, knowing the response of the LTI system to a single sinusoidal signal, we can determine its response to more complicated signals by making use of the superposition property

§4.2 The Frequency Response The quantity H(ejo) is called the frequency response of the lti discrete time system H(ejo) provides a frequency-domain description of the system H(ejo) is precisely the dtft of the impulse response hn of the system
§4.2 The Frequency Response • The quantity H(ej) is called the frequency response of the LTI discretetime system • H(ej) provides a frequency-domain description of the system • H(ej) is precisely the DTFT of the impulse response {h[n]} of the system

§4.2 The Frequency Response H(eJo), in general, is a complex function of o with a period2兀 It can be expressed in terms of its real and imaginary parts H(ejo)=hre(ejo)+j Him(ejo) or, in terms of its magnitude and phase, H(ejo)=H(ejo )l ee(@) where B(o=argH(eJo)
§4.2 The Frequency Response • H(ej), in general, is a complex function of with a period 2p • It can be expressed in terms of its real and imaginary parts H(ej)= Hre(ej) +j Him(ej) or, in terms of its magnitude and phase, H(ej)=|H(ej)| e() where ()=argH(ej)
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 电子科技大学《数字信号处理》英文PPT课件:Chapter 9 Analysis of Finite Wordlength Effects.ppt
- 电子科技大学《数字信号处理》英文PPT课件:Chapter 7 Digital Filter Design.ppt
- 电子科技大学《数字信号处理》英文PPT课件: Chapter 6 Digital Filter Structures.ppt
- 电子科技大学《数字信号处理》英文PPT课件:Chapter 5 Digital Processing of Continuous-Time- Signals.ppt
- 电子科技大学《数字信号处理》英文PPT课件: Chapter 3 Transform-Domain Representation of Discrete-Time Signals.ppt
- 电子科技大学《数字信号处理》英文PPT课件:Chapter 2 Discrete-Time Signals and Systems.ppt
- 电子科技大学《数字信号处理》英文PPT课件:Chapter 1 Continuous--time Signals and Systems.ppt
- 电子科技大学《数字信号处理》英文PPT课件:Introduction.ppt
- 《电路与模拟电子技术》课程教学资源(PPT课件讲稿)第9章 直流稳压电源.ppt
- 《电路与模拟电子技术》课程教学资源(PPT课件讲稿)第8章 负反馈放大器与集成运算放大器 8.3 集成运算放大电路.ppt
- 《电路与模拟电子技术》课程教学资源(PPT课件讲稿)第8章 负反馈放大器与集成运算放大器 8.1 负反馈放大器 8.2 差分放大器.ppt
- 《电路与模拟电子技术》课程教学资源(PPT课件讲稿)第7章 基本放大电路(功率放大电路).ppt
- 《电路与模拟电子技术》课程教学资源(PPT课件讲稿)第7章 基本放大电路(其他放大电路).ppt
- 《电路与模拟电子技术》课程教学资源(PPT课件讲稿)第7章 基本放大电路(共发射极放大电路).ppt
- 《电路与模拟电子技术》课程教学资源(PPT课件讲稿)第6章 半导体器件.ppt
- 《电路与模拟电子技术》课程教学资源(PPT课件讲稿)第4章 三相交流电路 第5章 电路的暂态分析.ppt
- 《电路与模拟电子技术》课程教学资源(PPT课件讲稿)第3章 单相正弦交流电路.ppt
- 《电路与模拟电子技术》课程教学资源(PPT课件讲稿)第2章 电路的分析方法.ppt
- 《电路与模拟电子技术》课程教学资源(PPT课件讲稿)第1章 电路的基本概念和基本定律.ppt
- 《电路与模拟电子技术》课程教学资源(PPT课件讲稿)第11章 技能训练及应用实践.ppt
- 信号与系统(英文版)_1 Signal and System.ppt
- 信号与系统(英文版)_2 Linear Time-Invariant Systems.ppt
- 信号与系统(英文版)_3 Fourier Series Representation of Periodic Signals.ppt
- 信号与系统(英文版)_4 The continuous time Fourier transform.ppt
- 信号与系统(英文版)_5 The discrete-time Fourier transform.ppt
- 信号与系统(英文版)_6. Time and Frequency Characterization of Signals and Systems.ppt
- 信号与系统(英文版)_7. Sampling.ppt
- 信号与系统(英文版)_8 Communication systems.ppt
- 信号与系统(英文版)_9 The Laplace Transform.ppt
- 高职系列教材:《电视技术》课程电子教案(PPT教学课件)封面及目录.ppt
- 高职系列教材:《电视技术》课程电子教案(PPT教学课件)第10章 电视机电源电路.ppt
- 高职系列教材:《电视技术》课程电子教案(PPT教学课件)第11章 彩色电视机遥控系统及整机分析.ppt
- 高职系列教材:《电视技术》课程电子教案(PPT教学课件)第12章 单片机芯与大屏幕彩色电视机.ppt
- 高职系列教材:《电视技术》课程电子教案(PPT教学课件)第13章 电视新技术.ppt
- 高职系列教材:《电视技术》课程电子教案(PPT教学课件)第1章 广播电视的基本知识.ppt
- 高职系列教材:《电视技术》课程电子教案(PPT教学课件)第2章 黑白电视的基本原理.ppt
- 高职系列教材:《电视技术》课程电子教案(PPT教学课件)第3章 彩色电视的基本原理.ppt
- 高职系列教材:《电视技术》课程电子教案(PPT教学课件)第4章 高频调谐器.ppt
- 高职系列教材:《电视技术》课程电子教案(PPT教学课件)第5章 图像中频通道.ppt
- 高职系列教材:《电视技术》课程电子教案(PPT教学课件)第6章 伴音通道.ppt