复旦大学:《数学分析》精品课程期末考试试卷(含答案)

复旦大学2005~2006学年第一学期期末考试试卷 课程名称:数学分析(Ⅰ 课程代码 开课院系:数学科学学院 学生姓名: 学号: 专业: 题目1 5 6 8总分 得分 1.计算下列各题: (1)求曲线{x=sm,在1=所对应的点处的切线方程 J= cos 24 (2)求极限 lim x cot2x
复旦大学 2005~2006 学年第一学期期末考试试卷 课程名称: 数学分析(I) 课程代码: 开课院系: 数学科学学院 学生姓名: 学号: 专业: 题 目 1 2 3 4 5 6 7 8 总 分 得 分 1.计算下列各题: (1)求曲线 在 ⎩ ⎨ ⎧ = = ty tx 2cos ,sin 4 π t = 所对应的点处的切线方程。 (2)求极限 。xx x 2cotlim→0

(3)求函数y=xx(x>0)的极值 (4)求曲线y=x(12lnx-7)的凸性与拐点。 (5)计算不定积分 (1
(3)求函数 x xy 1 = ( )的极值。 x > 0 (4)求曲线 = 4 xxy − )7ln12( 的凸性与拐点。 (5)计算不定积分∫ − )1( 2 xx dx

2.讨论函数 f(x)=x(1-x).x为有理数, x(1+x).x为无理数 的连续性与可微性。 3.问函数f(x)=x+2sm1在(.上是否一致连续?请对你的结论说明理由
2.讨论函数 ⎩ ⎨ ⎧ + − = 为无理数 为有理数, xxx xxx xf ),1( ),1( )( 的连续性与可微性。 3.问函数 x x x xf 1 sin 1 2 )( + + = 在 上是否一致连续?请对你的结论说明理由。 )1,0(

4.设函数f(x)在x=1点可导,且f(1)=1,f()=2,求lim f(1) 5.设函数f(x)满足f(nx)= L+x),求「f(x)k
4.设函数 在 点可导,且 xf )( x = 1 f = 1)1( , f ′ = 2)1( ,求 n n f n f ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + ∞→ )1( 1 1 lim 。 5.设函数 满足 xf )( x x xf )1ln( )(ln + = ,求∫ )( dxxf

6.证明:当x<0时成立 In(1-x)
6.证明:当 时成立 x < 0 1 )1ln( 11 < − + xx

复旦大学2005~2006学年第一学期期末考试试卷 答案 1.(本题满分40分,每小题8分) 2=0 (3)y-=e“为极大值。 (4)曲线在(0,1上为上凸,在[+∞)上为下凸,(1,-7)为拐点。 (5) C。 2.(本题满分15分)∫在x=0点连续且可微,f(0)=0,f(0)=1。在其它点 不连续,因此也不可微。 3.(本题满分10分)不一致连续。 4.(本题满分10分)e2。 5.(本题满分15分)x-(1+e)n(1+e+C。 6.(本题满分10分)证明:要证的不等式1+10(x<0),且g(0)=0,所以 g(x)=x+ln(1-x)<0(x<0) 因此 0(x<0)。 因为limf(x)=0,因此当x<0时成立 f(x) -(-x)+1<lmf(x)=0
复旦大学 2005~2006 学年第一学期期末考试试卷 答案 1. (本题满分 40 分,每小题 8 分) (1) yx =−+ 0222 。 (2) 2 1 。 (3) e ex ey 1 = = 为极大值。 (4)曲线在 上为上凸,在 ]1,0( +∞),1[ 上为下凸, − )7,1( 为拐点。 (5) C x x x + − −− 1 ln 1 。 2.(本题满分 15 分) 在 点连续且可微, f x = 0 f = 0)0( , f ′ = 1)0( 。在其它点 不连续,因此也不可微。 3.(本题满分 10 分)不一致连续。 4.(本题满分 10 分) 。2 e 5.(本题满分 15 分) Ceex 。 x x +++− − )1ln()1( 6.(本题满分 10 分)证明:要证的不等式 1 )1ln( 11 − ′ −= x xg ( x + − ′ −= x xx xf ( x < 0)。 因为 0)(lim ,因此当 时成立 0 = −→ xf x x < 0 <+−− − = 1)1ln( )1ln( )( x x x xf 0)(lim0 = −→ xf x

《数学分析(I》试题 2004.6 计算下列各题 1.求定积分x(2+n2x) 2.求定积分∫2max1,x); 3.求反常积分 01+x 4.求幂级数∑n+1-√n)2x2的收敛域: 5.设u=x,求du
《数学分析(II)》试题 2004.6 一.计算下列各题: 1.求定积分∫ + e xx dx 1 2 )ln2( ; 2.求定积分∫ ; − 2 2 2 ),1max( dxx 3.求反常积分 dx x x ∫ ∞+ 0 + 2 1 ln ; 4.求幂级数∑( ) ∞ = −+ 1 2 21 n nn xnn 的收敛域; 5.设 ,求 = xu yz du

设变量代换 可把方程6 v=x+ av r2a02=0简化为=0,求 常数a 三.平面点集00U,sinn=12,…}是否为紧集?请说明理由 四.函数项级数∑()x -在[0,1上是否一致收敛?请说明理由
二.设变量代换 可把方程 ⎩ ⎨ ⎧ += −= ayxv yxu ,2 6 0 2 2 2 2 2 = ∂ ∂ − ∂∂ ∂ + ∂ ∂ y z yx z x z 简化为 0 2 = ∂∂ ∂ vu z ,求 常数 。a 三.平面点集{ } ( ) ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ ⎟ = ⎠ ⎞ ⎜ ⎝ ⎛ U ,2,1 L 1 sin, 1 0,0 n nn 是否为紧集?请说明理由。 四.函数项级数 n n n n x x n + ⋅ − ∑ ∞ = − 1 )1( 1 1 在 上是否一致收敛?请说明理由。 ]1,0[

五.设函数f(x)在(-∞,+∞)上连续,且满足f(1)=1和 求∫f(x) 六,设函数f(x)在[,+∞)上具有连续导数,且满足f(1)=1和 f∫(x)= ,1≤x<+∞ x2+[f(x) 证明:limf(x)存在且小于1+
五.设函数 在 上连续,且满足 xf )( ∞+−∞ ),( f = 1)1( 和 )arctan( 2 1 )2( 2 0 dttxtf x x =− ∫ 。 求 。 ∫ 2 1 )( dxxf 六.设函数 在 上具有连续导数,且满足 xf )( ∞+ ),1[ f = 1)1( 和 2 2 )]([ 1 )( xfx xf + ′ = ,1 ≤ x < +∞。 证明: 存在且小于 xf )(limx +∞→ 4 1 π +

七.设如下定义函数: f(x)= + sin -dt, x>l 判别级数∑1的敛散性 =2f(n) 八.设=smn" r cos xd(n=012…).求级数∑,的和
七.设如下定义函数: dt t t xf x x t 1 sin 2 1)( 2 ∫ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ += , 。 x > 1 判别级数∑ ∞ =2 )( 1 n nf 的敛散性。 八.设 ∫ = 4 0 cossin π I xdxx n n (n = ,2,1,0 L)。求级数 的和。 ∑ ∞ n=0 n I
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《数学分析》:2009-2010年全国大学数学竞赛试题(含答案).pdf
- 复旦大学:《数学分析》精品课程(电子教案)重积分变量代换公式的证明.pdf
- 复旦大学:《数学分析》精品课程(电子教案)条件极值问题与 Lagrange 乘数法.pdf
- 复旦大学:《数学分析》精品课程(电子教案)用多项式逼近连续函数.pdf
- 复旦大学:《数学分析》精品课程(电子教案)函数的幂级数展开.pdf
- 复旦大学:《数学分析》精品课程(电子教案)数学分析中一个反例的教学——处处不可导连续函数.pdf
- 复旦大学:《数学分析》精品课程(电子教案)函数项级数的一致收敛.pdf
- 复旦大学:《数学分析》精品课程(电子教案)用微积分推导 Newton 的万有引力定律.pdf
- 复旦大学:《数学分析》精品课程(电子教案)实数连续性——实数系的基本定理.pdf
- 北京大学:《数学物理方法》精品课程电子教案(B类)第一部分 复变函数_第12讲 Γ函数.pdf
- 北京大学:《数学物理方法》精品课程电子教案(B类)第一部分 复变函数_第11讲 留数定理及其应用(二).pdf
- 北京大学:《数学物理方法》精品课程电子教案(B类)第一部分 复变函数_第10讲 留数定理及其应用(一).pdf
- 北京大学:《数学物理方法》精品课程电子教案(B类)第一部分 复变函数_第9讲 二阶常微分方程的幂级数解法(二).pdf
- 北京大学:《数学物理方法》精品课程电子教案(B类)第一部分 复变函数_第8讲 二阶常微分方程的幂级数解法(一).pdf
- 北京大学:《数学物理方法》精品课程电子教案(B类)第一部分 复变函数_第7讲 解析函数的局域性展开(二).pdf
- 北京大学:《数学物理方法》精品课程电子教案(B类)第一部分 复变函数_第6讲 解析函数的局域性展开(一).pdf
- 北京大学:《数学物理方法》精品课程电子教案(B类)第一部分 复变函数_第5讲 无穷级数(续).pdf
- 北京大学:《数学物理方法》精品课程电子教案(B类)第一部分 复变函数_第4讲 Cauchy积分公式(一).pdf
- 北京大学:《数学物理方法》精品课程电子教案(B类)第一部分 复变函数_第3讲 复变积分.pdf
- 北京大学:《数学物理方法》精品课程电子教案(B类)第一部分 复变函数_第2讲 初等函数和多值函数.pdf
- 复旦大学:《数学分析》教材习题全解(上册)第一章 集合与映射 习题 1.1 集合 习题 1.2 映射与函数.pdf
- 复旦大学:《数学分析》教材习题全解(上册)第二章 数列极限 习题 2.1 实数系的连续性 习题 2.2 数列极限.pdf
- 复旦大学:《数学分析》教材习题全解(上册)第二章 数列极限 习题 2.3 无穷大量 习题 2.4 收敛准则.pdf
- 复旦大学:《数学分析》教材习题全解(上册)第三章 函数极限与连续函数 习题 3.1 函数极限 习 题 3.2 连续函数.pdf
- 复旦大学:《数学分析》教材习题全解(上册)第三章 函数极限与连续函数 习题 3.3 无穷小量与无穷大量的阶 习 题 3.4 闭区间上的连续函数.pdf
- 复旦大学:《数学分析》教材习题全解(上册)第四章 微分 习题 4.1 微分和导数 习 题 4.2 导数的意义和性质.pdf
- 复旦大学:《数学分析》教材习题全解(上册)第四章 微分 习题 4.3 导数四则运算和反函数求导法则.pdf
- 复旦大学:《数学分析》教材习题全解(上册)第四章 微分 习题 4.4 复合函数求导法则及其应用.pdf
- 复旦大学:《数学分析》教材习题全解(上册)第四章 微分 习题 4.5 高阶导数和高阶微分.pdf
- 复旦大学:《数学分析》教材习题全解(上册)第五章 微分中值定理及其应用 习题 5.1 微分中值定理.pdf
- 复旦大学:《数学分析》教材习题全解(上册)第五章 微分中值定理及其应用 习题 5.2 L'Hospital 法则.pdf
- 复旦大学:《数学分析》教材习题全解(上册)第五章 微分中值定理及其应用 习题 5.3 Taylor 公式和插值多项式.pdf
- 复旦大学:《数学分析》教材习题全解(上册)第五章 微分中值定理及其应用 习题 5.4 函数的 Taylor 公式及其应用.pdf
- 复旦大学:《数学分析》教材习题全解(上册)第五章 微分中值定理及其应用 习题 5.5 应用举例.pdf
- 复旦大学:《数学分析》教材习题全解(上册)第六章 不定积分 习题 6.1 求下列不定积分.pdf
- 复旦大学:《数学分析》教材习题全解(上册)第六章 不定积分 习题 6.2 换元积分法和分部积分法.pdf
- 复旦大学:《数学分析》教材习题全解(上册)第六章 不定积分 习题 6.3 求下列不定积分.pdf
- 复旦大学:《数学分析》教材习题全解(上册)第七章 定积分 习题 7.1 定积分的概念和可积条件.pdf
- 复旦大学:《数学分析》教材习题全解(上册)第七章 定积分 习题 7.2 定积分的基本性质.pdf
- 复旦大学:《数学分析》教材习题全解(上册)第七章 定积分 习题 7.3.pdf