武汉大学:《数值分析》课程教学资源(PPT课件讲稿)第九章 矩阵特征值问题的数值方法

第9章矩阵特征值问题的数值 方法 91特征值与特征向量 9.2 Hermite矩阵特征值问题 93 Jacobi方法 94对分法 9.5乘幂法 96反幂法 97QR方法
第9章 矩阵特征值问题的数值 方法 9.1 特征值与特征向量 9.2 Hermite矩阵特征值问题 9.3 Jacobi方法 9.4 对分法 9.5 乘幂法 9.6 反幂法 9.7 QR方法

91特征值与特征向量 设A是n阶矩阵,x是非零列向量.如果有 数λ存在,满足Ax=Ax(1) 那么,称ⅹ是矩阵A关于特征值λ的特征向 量
9.1 特征值与特征向量 设A是n阶矩阵,x是非零列向量. 如果有 数λ存在,满足 , (1) 那么,称x是矩阵A关于特征值λ的特征向 量

如果把(1)式右端写为x,那么(1)式又可写 为 (-A)x=0 即|I-A|=0 f()=九-A2”+an1”+…+a1元+ao 它是关于参数入的n次多项式,称为矩阵A的特 征多项式,其中a0=(1)n|A
如果把(1)式右端写为 ,那么(1)式又可写 为: x ( ) 0 I A x − = 即| | 0 I A− = 1 1 1 0 ( ) | | ... n n n f I A a a a − = − = + + + + − 记 它是关于参数λ的n次多项式,称为矩阵A的特 征多项式, 其中a0=(-1)n|A|. (2)

显然,当是A的一个特征值时,它必然 是f(4)2=0的根反之,如果x是(x)=0根 那么齐次方程组(2)有非零解向量x,使(1)式 成立.从而,λ是A的一个特征值 A的特征值也称为A的特征根
显然,当λ是A的一个特征值时,它必然 是 的根. 反之,如果λ是 的根, 那么齐次方程组(2)有非零解向量x,使(1)式 成立. 从而,λ是A的一个特征值. A的特征值也称为A的特征根. f ( ) 0 = f ( ) 0 =

矩阵特征值和特征向量有如下主要性质: 定理91.1n阶矩阵A是降秩矩阵的充分必要 条件是A有零特征值 定理9.12设矩阵A与矩阵B相似,那么它们 有相同的特征值. 定理9.1.3n阶矩阵A与AT有相同的特征值. 定理9.14设λ热是n阶矩阵A的两个互异特 征值,ⅹ、y分别是其相应的右特征向 量和左特征向量,那么,xy=0
矩阵特征值和特征向量有如下主要性质: 定理9.1.1 n阶矩阵A是降秩矩阵的充分必要 条件是A有零特征值. 定理9.1.2 设矩阵A与矩阵B相似,那么它们 有相同的特征值. 定理9.1.3 n阶矩阵A与AT有相同的特征值. 定理9.1.4 设λi≠λj是n阶矩阵A的两个互异特 征值,x、y分别是其相应的右特征向 量和左特征向量,那么,x Ty=0

9,2 Hermite矩阵特征值问题 设A为n阶矩阵,其共轭转置矩阵记为AH如 果A=AH,那么,A称为 Hermite矩阵
9.2 Hermite矩阵特征值问题 • 设A为n阶矩阵,其共轭转置矩阵记为AH. 如 果A=AH,那么,A称为Hermite矩阵

921 Hermite矩阵的有关性质 设1,2,…,是 Hermite矩阵A的n个特征 值.有以下性质 入,气2,…,,全是实数 1,气2,…,,有相应的n个线性无关的特征 向量,它们可以化为一组标准酉交的特征 向量组41,l2,…,n,即l Ln是酉空间中的一组标准酉交基
9.2.1 Hermite矩阵的有关性质 设 是Hermite矩阵A的n个特征 值. 有以下性质: • 全是实数. 1 2 , ,..., n 1 2 , ,..., n • 有相应的n个线性无关的特征 向量,它们可以化为一组标准酉交的特征 向量组 ,即 1 2 , ,..., n 1 2 , ,..., n u u u H i j u u ij = • 1 2 是酉空间中的一组标准酉交基. , ,..., n u u u

记U=(l4,2…,1n),它是一个西阵,即 UHU=UUHI,那么 UAU= D A与以入1,气23…,元,为对角元的对角阵相似 A为正定矩阵的充分必要条件是,兄2,…,n 全为正数
• 记U=( ),它是一个酉阵,即 UHU=UUH=I,那么 即A与以 为对角元的对角阵相似. 1 2 , ,..., n u u u 1 H n U AU D = = 1 2 , ,..., n • A为正定矩阵的充分必要条件是 全为正数. 1 2 , ,..., n

定理92.1设入1,2,…,愚 Hermite矩阵A的n 个特征值,那么 ‖4l2=max|2 42=p(A24)=(4)=(p(4) 因此‖42=max14 1< ≤ 又由4=(24)=()=∑2 得A4=、∑
定理9.2.1 设 是Hermite矩阵A的n 个特征值,那么 证: 1 2 , ,..., n 2 1 max i i n A = 2 1 n F i i A = = 2 2 2 2 ( ) ( ) ( ( )) H 由 A A A A A = = = 2 1 max i i n A 因此 = 2 2 2 1 ( ) ( ) n H F i i A tr A A tr A = 又由 = = = 2 1 n F i i A = 得 =

设x是一个非零向量,A是 Hermite矩阵 称x4x为矩阵A关于向量x的 Rayleigh商, 记为R( 定理922如果A的n个特征值为4≥2≥…≥ 其相应的标准酉交的特征向量为1,212…,ln 那么有A≥R(x)≥n 定理923设A是 Hermite矩阵,那么 2=minR(x)或=minR(x) x∈C1且x≠0 XCCn=k+1且x≠=0
设x是一个非零向量,A是Hermite矩阵, 称 为矩阵A关于向量x的Rayleigh商, 记为R(x). H H x Ax x x 定理9.2.2 如果A的n个特征值为 其相应的标准酉交的特征向量为 那么有 1 2 ... n 1 2 , ,..., n u u u 1 ( ) R x n 定理9.2.3 设A是Hermite矩阵 ,那么 1 0 0 min ( ) min ( ) k n k k k x C x x C x R x R x − + = = 且 且 或
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 武汉大学:《数值分析》课程教学资源(PPT课件讲稿)第八章 刚性方程组及其数值计算续.ppt
- 武汉大学:《数值分析》课程教学资源(PPT课件讲稿)第八章 常微分方程初值问题的单步法.ppt
- 武汉大学:《数值分析》课程教学资源(PPT课件讲稿)第七章 数值积分与数值微分 7.3-7.5 Romberg积分、Gauss求积公式.ppt
- 武汉大学:《数值分析》课程教学资源(PPT课件讲稿)第七章 数值积分与数值微分 7.1-7.2 代数精确度、插值型求积公式.ppt
- 武汉大学:《数值分析》课程教学资源(PPT课件讲稿)第六章 曲线拟合 6.2-6.3 线性拟合问题、线性最小二乘问题.ppt
- 武汉大学:《数值分析》课程教学资源(PPT课件讲稿)第五章 函数逼近.ppt
- 武汉大学:《数值分析》课程教学资源(PPT课件讲稿)第四章 插值法 4.4 Newton 插值法.ppt
- 武汉大学:《数值分析》课程教学资源(PPT课件讲稿)第四章 插值法 4.4 Newton 插值法.ppt
- 武汉大学:《数值分析》课程教学资源(PPT课件讲稿)第三章 非线性方程的数值解法——非线性方程的牛顿法(Newton Method of Nonlinear Equations)(邹秀芬).ppt
- 武汉大学:《数值分析》课程教学资源(PPT课件讲稿)第三章 非线性方程的数值解法 3.1-3.2 对分区间法(Bisection Method)、单个方程的迭代法.ppt
- 武汉大学:《数值分析》课程教学资源(PPT课件讲稿)第二章 求解线性方程组的数值解法 2.2 解线性方程组的迭代法.ppt
- 武汉大学:《数值分析》课程教学资源(PPT课件讲稿)第二章 求解线性方程组的数值解法 2.1 线性方程组的直接法.ppt
- 武汉大学:《数值分析》课程教学资源(PPT课件讲稿)向量和矩阵范数、线性方程组的性态(误差分析).ppt
- 武汉大学:《数值分析》课程教学资源(PPT课件讲稿)第一章 计算机解决实际问题的步骤.ppt
- 西安电子科技大学出版社:面向21世纪高等学校计算机类专业系列教材《离散数学》课程教学资源(PPT课件讲稿)第9章 树.ppt
- 西安电子科技大学出版社:面向21世纪高等学校计算机类专业系列教材《离散数学》课程教学资源(PPT课件讲稿)第8章 图的基本概念.ppt
- 西安电子科技大学出版社:面向21世纪高等学校计算机类专业系列教材《离散数学》课程教学资源(PPT课件讲稿)第7章 格和布尔代数.ppt
- 西安电子科技大学出版社:面向21世纪高等学校计算机类专业系列教材《离散数学》课程教学资源(PPT课件讲稿)第6章 几个典型的代数系统.ppt
- 西安电子科技大学出版社:面向21世纪高等学校计算机类专业系列教材《离散数学》课程教学资源(PPT课件讲稿)第5章 代数系统的基本概念.ppt
- 西安电子科技大学出版社:面向21世纪高等学校计算机类专业系列教材《离散数学》课程教学资源(PPT课件讲稿)第4章 二元关系和函数.ppt
- 武汉大学:《数值分析》课程教学资源(章节习题)第一章 基本知识习题.pdf
- 武汉大学:《数值分析》课程教学资源(章节习题)第二章 习题.pdf
- 武汉大学:《数值分析》课程教学资源(章节习题)第三章 习题.pdf
- 武汉大学:《数值分析》课程教学资源(章节习题)第五章 习题.pdf
- 武汉大学:《数值分析》课程教学资源(章节习题)第四章 习题.pdf
- 武汉大学:《数值分析》课程教学资源(章节习题)第八章 常微分方程数值解.pdf
- 武汉大学:《数值分析》课程教学资源(章节习题)第六章 习题.pdf
- 武汉大学:《数值分析》课程教学资源(章节习题)第七章 习题.pdf
- 武汉大学:《数值分析》课程教学资源(章节习题)第九章 矩阵特征值问题的数值方法.pdf
- 首都师范大学:《数值计算方法》课程教学资源(PPT课件讲稿)绪论(主讲:蒋莉).ppt
- 首都师范大学:《数值计算方法》课程教学资源(PPT课件讲稿)第1章 插值.ppt
- 首都师范大学:《数值计算方法》课程教学资源(PPT课件讲稿)第2章 数值微分和数值积分.ppt
- 首都师范大学:《数值计算方法》课程教学资源(PPT课件讲稿)第3章 曲线拟合的最小二乘法.ppt
- 首都师范大学:《数值计算方法》课程教学资源(PPT课件讲稿)第4章 非线性方程求根.ppt
- 首都师范大学:《数值计算方法》课程教学资源(PPT课件讲稿)第5章 解线性方程组的直接法.ppt
- 首都师范大学:《数值计算方法》课程教学资源(PPT课件讲稿)第6章 解线性方程组的迭代法.ppt
- 首都师范大学:《数值计算方法》课程教学资源(PPT课件讲稿)第7章 矩阵的特征值和特征向量.ppt
- 首都师范大学:《数值计算方法》课程教学资源(PPT课件讲稿)第8章 常微分方程.ppt
- 中国科学院:《数值计算方法》解线性代数方程组的直接方法.ppt
- 中国科学院:《数值计算方法》第四章 高斯消去法的变形.ppt