电子科技大学:《先进计算机网络技术》课程教学资源(课件讲稿)Unit 2 Call-level Models and Admission Control

Feng Gang National Laboratory of Communication,UESTC Aug 2017 Ver 1.4 Unit 2 Call-level Models and Admission Control 2616009:Network Traffic Engineering 2:Call-level Models and Admission Control Page.1
2616009: Network Traffic Engineering Feng Gang National Laboratory of Communication, UESTC Aug 2017 Ver 1.4 2: Call-level Models and Admission Control Page.1 Unit 2 Call-level Models and Admission Control

Feng Gang National Laboratory of Communication,UESTC Aug 2017 Ver 1.4 Roadmap Review:Queuing Models for Birth-Death Process Multiservice Loss System and The Stochastic Knapsack 。 Admission Policies Optimization Concept Optimal Complete Partitioning Policies Optimal Coordinate Convex Policies Case Study:Call Admission Control for Multi-service Mobile Networks with Bandwidth Asymmetry between Uplink and Downlink 2616009:Network Traffic Engineering 2:Call-level Models and Admission Control Page.2
2616009: Network Traffic Engineering Feng Gang National Laboratory of Communication, UESTC Aug 2017 Ver 1.4 2: Call-level Models and Admission Control Page.2 Roadmap • Review: Queuing Models for Birth-Death Process • Multiservice Loss System and The Stochastic Knapsack • Admission Policies • Optimization Concept • Optimal Complete Partitioning Policies • Optimal Coordinate Convex Policies • Case Study: Call Admission Control for Multi-service Mobile Networks with Bandwidth Asymmetry between Uplink and Downlink

Feng Gang National Laboratory of Communication,UESTC Aug 2017 Ver 1.4 Review:Queuing model for Birth-Death Process A birth and death process is a continuous-time Markov chain with states {0,1,..}for which transitions from state n may go only to either state n-1 or state n+1. M servers N buffers 2616009:Network Traffic Engineering 2:Call-level Models and Admission Control Page.3
2616009: Network Traffic Engineering Feng Gang National Laboratory of Communication, UESTC Aug 2017 Ver 1.4 2: Call-level Models and Admission Control Page.3 Review: Queuing model for Birth-Death Process • A birth and death process is a continuous-time Markov chain with states {0,1,…} for which transitions from state n may go only to either state n-1 or state n+1. N buffers M servers

Feng Gang National Laboratory of Communication,UESTC Aug 2017 Ver 1.4 Queuing model for Birth-Death Process(cont'd) ·Notations -X=number of customers in the system(buffer and servers)at time t -=arrival rate of customers in state X,=n -n =departure rate of customers in state X,=n ·Assumptions P(X+w-X,=1X,=n)=n△t+o(△t) P(X,+-X,=-1|X,=n)=4n△t+o(△) P(X-X,>1X,=n)=0(At) where o(△)=0 o(△)=lim ar 1→0 2616009:Network Traffic Engineering 2:Call-level Models and Admission Control Page.4
2616009: Network Traffic Engineering Feng Gang National Laboratory of Communication, UESTC Aug 2017 Ver 1.4 2: Call-level Models and Admission Control Page.4 Queuing model for Birth-Death Process(cont’d) • Notations - Xt = number of customers in the system (buffer and servers) at time t n = arrival rate of customers in state n =departure rate of customers in state • Assumptions Xt n Xt n P(X X 1| X n) t o( t) tt t t n P(X X 1| X n) t o( t) tt t t n P(| X X | 1| X n) o( t) tt t t where 0 ( ) ( ) lim 0 t o t o t t

Feng Gang National Laboratory of Communication,UESTC Aug 2017 Ver 1.4 Queuing model for Birth-Death Process(cont'd) ·Analysis Let P(t)=P(X,=n) △Pn(t+△t)=Pn(t+△t)-Pn(t) =*P()-()At*P(t)+A*(t) Taking the limit as△t-→o gives Pm(t))=元n-Pn-1(t))-(4n+n)Pn(t)+4n+1Pn+1(t) Stationary Conditions P(0)=1 B.=limp(t)P= ∑p=1 -f1a TIa n=1i=0 2616009:Network Traffic Engineering 2:Call-level Models and Admission Control Page.5
2616009: Network Traffic Engineering Feng Gang National Laboratory of Communication, UESTC Aug 2017 Ver 1.4 2: Call-level Models and Admission Control Page.5 Queuing model for Birth-Death Process(cont’d) • Analysis Let P (t) P(X n) n t * ( ) ( ) * ( ) * ( ) ( ) ( ) ( ) 1 1 1 1 t P t t P t t P t P t t P t t P t n n n n n n n n n n Taking the limit as gives t o ( ) ( ) ( ) ( ) ( ) 1 1 1 1 ' P t P t P t P t n n n n n n n n Stationary Conditions P0 (0) 1 ( ) P limP t n t n nPn n1Pn1 0 1 i Pi 0 1 0 1 P / P n n n i i 1 1 0 0 1 1/ 1 / n n i P i i

Feng Gang National Laboratory of Communication,UESTC Aug 2017 Ver 1.4 Queuing model for Birth-Death Process(cont'd) Some special Birth-death Processes Poisson Process:=0 for all n≥0 n=元for all n≥0 The probability of k arrivals in T: p(k)=(AT)e-i/k! Inter-arrival time:Exponential distribution: f(x)=le x≥0 -Queuing system M/M/1:元,=z for alln≥0 =u for alln≥0 Number of customers in the system geometric distribution: p(k)=(1-p)p The average waiting time from arrival until the end of service for FIFO discipline 1-p (p=元1) 2616009:Network Traffic Engineering 2:Call-level Models and Admission Control Page.6
2616009: Network Traffic Engineering Feng Gang National Laboratory of Communication, UESTC Aug 2017 Ver 1.4 2: Call-level Models and Admission Control Page.6 Queuing model for Birth-Death Process(cont’d) • Some special Birth-death Processes - Poisson Process : The probability of k arrivals in T: Inter-arrival time: Exponential distribution: - Queuing system M/M/1 : 0 for all n 0 n n for all n 0 for all n 0 n for all n 0 n p(k) ( T) e / k! k T ( ) 0 f x e x x Number of customers in the system : geometric distribution: k p(k) (1 ) The average waiting time from arrival until the end of service for FIFO discipline 1 1/ T ( / )

Feng Gang National Laboratory of Communication,UESTC Aug 2017 Ver 1.4 Queuing model for Birth-Death Process(cont'd) The Erlang B Loss Formula When the number of sources is assumed to be infinite,with a total aggregate traffic load of A Erlangs and with assumption that calls which arrive when all C servers are busy are cleared from the system and do not return.The Erlang B loss formula is: A/C! B(C,A)= 41m (A=元10) 1=0 The Erlang B distribution for the number of busy servers is A"n! 三术因 2616009:Network Traffic Engineering 2:Call-level Models and Admission Control Page.7
2616009: Network Traffic Engineering Feng Gang National Laboratory of Communication, UESTC Aug 2017 Ver 1.4 2: Call-level Models and Admission Control Page.7 Queuing model for Birth-Death Process(cont’d) • The Erlang B Loss Formula - When the number of sources is assumed to be infinite, with a total aggregate traffic load of A Erlangs and with assumption that calls which arrive when all C servers are busy are cleared from the system and do not return. The Erlang B loss formula is: - The Erlang B distribution for the number of busy servers is C n n C A n A C B C A 0 / ! / ! ( , ) C k k n n A k A n P 0 / ! / ! (A / )

Feng Gang National Laboratory of Communication,UESTC Aug 2017 Ver 1.4 Queuing model for Birth-Death Process(cont'd) The Erlang-Engset Loss Formula If the number of source is finite while blocked calls are cleared The Probability of finding X servers busy is given by the Erlang- Engest distribution.Letting Sx denote the probability of finding X servers busy when there are S sources and the offered traffic per idle source is b Erlangs S: 2616009:Network Traffic Engineering 2:Call-level Models and Admission Control Page.8
2616009: Network Traffic Engineering Feng Gang National Laboratory of Communication, UESTC Aug 2017 Ver 1.4 2: Call-level Models and Admission Control Page.8 Queuing model for Birth-Death Process(cont’d) • The Erlang-Engset Loss Formula - If the number of source is finite while blocked calls are cleared . The Probability of finding X servers busy is given by the ErlangEngest distribution. Letting Sx denote the probability of finding X servers busy when there are S sources and the offered traffic per idle source is b Erlangs C i i x b i S X S S 0

Feng Gang National Laboratory of Communication,UESTC Aug 2017 Ver 1.4 Multiservice Loss Systems A loss system is a collection of resources to which calls,each with an associated holding time and class,arrive at random instances. 。 An arriving call either is admitted into the system or is blocked and lost 。 The admittance decision is based on the call's class and the system's state C bandwidth units=C servers ,41,b Collection of calls departure Resources :arrival rate System state n (Carried traffic) :service rate b,bandwidth class j Lost (blocked or overflow traffic streams) 2616009:Network Traffic Engineering 2:Call-level Models and Admission Control Page.9
2616009: Network Traffic Engineering Feng Gang National Laboratory of Communication, UESTC Aug 2017 Ver 1.4 2: Call-level Models and Admission Control Page.9 Multiservice Loss Systems • A loss system is a collection of resources to which calls, each with an associated holding time and class, arrive at random instances. • An arriving call either is admitted into the system or is blocked and lost • The admittance decision is based on the call’s class and the system’s state Collection of Resources System state n calls Lost (blocked or overflow traffic streams) departure j j j , , b : arrivalrate j :service rate j : bandwidth class j j b C bandwidth units=C servers (Carried traffic)

Feng Gang National Laboratory of Communication,UESTC Aug 2017 Ver 1.4 Loss Networks with Fixed Routing PBX Central Example:A telephone network with star topology switch 6 classes System state:n=(n,...n),n:class k in progress PBX PBX -s:the set for all state -k:the set of state with room for another class-k call O PBX neS if and only if n+ees Where ex is the vector of all zeros except for a one in the kth component Clocking Probability of a class-k call B=1- G where -20器 and nes k=1 neSx 1=1 n! Pr=h/ue 2616009:Network Traffic Engineering 2:Call-level Models and Admission Control Page.10
2616009: Network Traffic Engineering Feng Gang National Laboratory of Communication, UESTC Aug 2017 Ver 1.4 2: Call-level Models and Admission Control Page.10 Loss Networks with Fixed Routing • Example: A telephone network with star topology - 6 classes - System state: , : class k in progress - S : the set for all state - Sk: the set of state with room for another class-k call - if and only if Where is the vector of all zeros except for a one in the kth component • Clocking Probability of a class-k call PBX PBX PBX PBX Central switch ( ,... ) n n1 n6 nk k nS S k n e k e G G B k k 1 where n S 1 6 ! k k n k n ρ G k and k l l l n l k n ρ G n S 1 6 ! k k k /
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 电子科技大学:《先进计算机网络技术》课程教学资源(课件讲稿)Unit 1 Overview - A big Picture on Traffic Control and QoS in IP networks.pdf
- 电子科技大学:《先进计算机网络技术》课程教学资源(课件讲稿)Introduction(冯钢).pdf
- 电子科技大学:《大数据分析与挖掘 Big Data Analysis and Mining》课程教学资源(课件讲稿)Lecture 7 Hadoop-Spark.pdf
- 电子科技大学:《大数据分析与挖掘 Big Data Analysis and Mining》课程教学资源(课件讲稿)Lecture 6 Graph Mining.pdf
- 电子科技大学:《大数据分析与挖掘 Big Data Analysis and Mining》课程教学资源(课件讲稿)Lecture 5 Data Stream Mining.pdf
- 电子科技大学:《大数据分析与挖掘 Big Data Analysis and Mining》课程教学资源(课件讲稿)Lecture 4 Sampling for Big Data.pdf
- 电子科技大学:《大数据分析与挖掘 Big Data Analysis and Mining》课程教学资源(课件讲稿)Lecture 3 Hashing.pdf
- 电子科技大学:《大数据分析与挖掘 Big Data Analysis and Mining》课程教学资源(课件讲稿)Lecture 2 BasicConcepts(Foundations of Data Mining).pdf
- 电子科技大学:《大数据分析与挖掘 Big Data Analysis and Mining》课程教学资源(课件讲稿)Lecture 1 Intro(主讲:邵俊明).pdf
- 计算机科学与技术(PPT讲稿)Unlock with Your Heart - Heartbeat-based Authentication on Commercial Mobile Phones.pptx
- 计算机科学与技术(参考文献)VECTOR - Velocity Based Temperature-field Monitoring with Distributed Acoustic Devices.pdf
- 计算机科学与技术(参考文献)VSkin - Sensing Touch Gestures on Surfaces of Mobile Devices Using Acoustic Signals.pdf
- 计算机科学与技术(参考文献)RespTracker - Multi-user Room-scale Respiration Tracking with Commercial Acoustic Devices.pdf
- 计算机科学与技术(参考文献)Dynamic Speed Warping - Similarity-Based One-shot Learning for Device-free Gesture Signals.pdf
- 计算机科学与技术(参考文献)SpiderMon - Towards Using Cell Towers as Illuminating Sources for Keystroke Monitoring.pdf
- 计算机科学与技术(参考文献)Unlock with Your Heart:Heartbeat-based Authentication on Commercial Mobile Phones.pdf
- 计算机科学与技术(参考文献)QGesture - Quantifying Gesture Distance and Direction with WiFi Signals.pdf
- 计算机科学与技术(PPT讲稿)QGesture - Quantifying Gesture Distance and Direction with WiFi Signals.pptx
- 计算机科学与技术(参考文献)Gait Recognition Using WiFi Signals.pdf
- 计算机科学与技术(参考文献)Gait Recognition Using WiFi Signals.pdf
- 电子科技大学:《先进计算机网络技术》课程教学资源(课件讲稿)Unit 3 Traffic Policing and Shaping.pdf
- 电子科技大学:《先进计算机网络技术》课程教学资源(课件讲稿)Unit 4 TCP Traffic Control.pdf
- 电子科技大学:《先进计算机网络技术》课程教学资源(课件讲稿)Unit 5 Buffer Management.pdf
- 电子科技大学:《先进计算机网络技术》课程教学资源(课件讲稿)Unit 6 Packet Scheduling.pdf
- 电子科技大学:《先进计算机网络技术》课程教学资源(课件讲稿)Unit 7 IntServ/RSVP and DiffServ.pdf
- 电子科技大学:《先进计算机网络技术》课程教学资源(课件讲稿)Unit 8 Traffic Management and Modeling.pdf
- 电子科技大学:《先进计算机网络技术》课程教学资源(课件讲稿)Unit 9 Network Traffic Engineering.pdf
- 电子科技大学:《先进计算机网络技术》课程教学资源(课件讲稿)Unit 10 Network Coding and Traffic Balancing.pdf
- 电子科技大学:《先进计算机网络技术》课程教学资源(课件讲稿)Unit 11 AI Enabled Wireless Access Control and Handoff.pdf
- 《机器学习 Machine Learning》课程教学资源(实践资料)华为Atlas人工智能计算解决方案产品彩页.pdf
- 《机器学习 Machine Learning》课程教学资源(实践资料)Xshell远程登陆开发板方法(华为atlas800 - 910).pdf
- 《机器学习 Machine Learning》课程教学资源(实践资料)MNIST手写体识别实验.pdf
- 《机器学习 Machine Learning》课程教学资源(实践资料)MNIST手写数字识别的Atlas 200DK推理应用.pdf
- 《机器学习 Machine Learning》课程教学资源(实践资料)ModelArts花卉识别(基于MindSpore的图像识别全流程代码实战).pdf
- 《机器学习 Machine Learning》课程教学资源(书籍文献)[德] Andreas C. Müller [美] Sarah Guido《Python机器学习基础教程 Introduction to Machine Learning with Python》.pdf
- 《机器学习 Machine Learning》课程教学资源(书籍文献)[美] 弗朗索瓦·肖莱《Python深度学习 Deep Learning with Python》.pdf
- 《机器学习 Machine Learning》课程教学资源(书籍文献)Finding Structure in Time.pdf
- 《机器学习 Machine Learning》课程教学资源(书籍文献)Learning representations by back-propagating errors.pdf
- 《机器学习 Machine Learning》课程教学资源(书籍文献)Attention Is All You Need.pdf
- 《机器学习 Machine Learning》课程教学资源(书籍文献)Gradient-Based Learning Applied to Document Recognition.pdf