深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)规划论(线性规划)运筹学3类 线性系统的解决 Solving Linear Systems

Chapter 2 Solving Linear Systems Matrix Definitions Matrix--- Rectangular array/ block of numbers 0 20 01 15 500 0 The size/order/dimension of a matrix (The numbers of RowS) by(x)(the numbers of COLUMNS)
Chapter 2 Solving Linear Systems • Matrix Definitions – Matrix--- Rectangular array/ block of numbers. – The size/order/dimension of a matrix: • (The numbers of ROWS) by(x) (the numbers of COLUMNS) − − − 0 500 0 1 1 0 0 1 15 1 0 20

ELEMENTS: individual numbers of matrix aj--an element of Row i and COLumn j SQURE matrix The numbers of rows= the numbers of COLUMNs DENTITY matrix: symbol TRANSPOSED matrix: Rows and columns of a matrix are switched A=25 456 36
– ELEMENTS: individual numbers of matrix – aij --- an element of ROW i and COLUMN j – SQURE matrix • The numbers of ROWS = the numbers of COLUMNS – IDENTITY matrix: symbol---I – TRANSPOSED matrix: Rows and columns of a matrix are switched – = = 6 5 4 3 2 1 4 5 6 1 2 3 t A A

Matrix Operations Addition Two same size matrices can be added ·C=A+B=B+A 101112 A=456 B=131415 789 61718 1+102+113+12(111315 C=4+135+146+15|=171921 7+168+179+18(232527
• Matrix Operations – Addition • Two same size matrices can be added. • C=A+B=B+A = + + + + + + + + + = = = 27 21 15 25 19 13 23 17 11 9 18 6 15 3 12 8 17 5 14 2 11 7 16 4 13 1 10 18 15 12 17 14 11 16 13 10 9 6 3 8 5 2 7 4 1 C A B

Multiplication Multiplication of a matrix by a scalar A=kA Example Mult plication of 2 Matrices Two Matrix can be multiplied if and only if--- The NUMBER OF COLUMNS OF THE FIRST MATRIX- The NUMBER OF ROWS OF THE SECOND MATRIX The Size of the resultant matrix the number of rows of the First matrix by the NUMBER OF COLUMNS OF THE SECOND MATRIX
– Multiplication • Multiplication of a Matrix by a Scalar – A=kA – Example • Multiplication of 2 Matrices – Two Matrix can be multiplied if and only if--- The NUMBER OF COLUMNS OF THE FIRST MATRIX = The NUMBER OF ROWS OF THE SECOND MATRIX – The Size of the resultant matrix --- the NUMBER OF ROWS OF THE FIRST MATRIX by the NUMBER OF COLUMNS OF THE SECOND MATRIX

E xample First Matrix Second Matrix Multipication Size Possible? A B AB (a)(2x2) (2x2) YES XL (b)(3x3) (3x2) YES (3x2) (c)(3x3) (2x3) NO (d)(5x5) YES (5X1)
• Example First Matrix Second Matrix Multipication Size Possible? A B AB (a)(2x2) (2x2) YES (2x2) (b)(3x3) (3x2) YES (3x2) (c)(3x3) (2x3) NO (d)(5x5) (5x1) YES (5x1)

· Notice that AB exists and so does ba with ba being(2x2) AB exists, BA does not exist as a (3x2)cannot be m ultiplied into a(3x3) ab does not exist, It's possible that ba exists How to calculate the elements of c=AB Exampl np e 123 A=456 B=11 789 68 C=AB= 67 266
• Notice that: – AB exists and so does BA with BA being (2x2) – AB exists, BA does not exist as a (3x2) cannot be multiplied into a (3x3) – AB does not exist, It’s possible that BA exists • How to calculate the elements of C=AB – Example = = = = 266 67 68 12 11 10 9 6 3 8 5 2 7 4 1 C AB A B

56 B 34 78 1922 C= AB 4350 2334 C= BA 3146 AB≠B4
AB BA C BA C AB A B = = = = = = 31 46 23 34 43 50 19 22 7 8 5 6 3 4 1 2

A---mxn matrix identity matrix DIA=A DAI=A
– A---mxn matrix I=identity matrix »I A = A »A I = A

Matrix Inversion Only square matrices have the inverse but not all square matrices have inverses Scalar number. The inverse of matrix A is denoted by a-I The size of a-I is the same as a and AA=I=A-A Any matrix times its own inverse is just the appropriately sized identity matrix
– Matrix Inversion • Only Square matrices have the inverse but not all square matrices have inverses. • Scalar number: • • The inverse of matrix A is denoted by A-1 • The size of A-1 is the same as Aand • A A-1 = I = A-1 A • Any Matrix times its own inverse is just the appropriately sized identity matrix a a aa a a 1 1 1 1 1 = = = − − −

Matrix equality Two matrices are said to be equal if They are same size Corresponding elements in the two matrices are the same
– Matrix Equality • Two matrices are said to be equal if – They are same size – Corresponding elements in the two matrices are the same
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)规划论(线性规划)运筹学1类 高阶运筹 学线性规划(续).ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)规划论(线性规划)运筹学1类 线性规划问题.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)绪论 运筹学1类 高阶运筹学 绪论(学科简述).ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)绪论 运筹学1类 基本概念和基本理论.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)绪论 运筹学1类 运筹学思想与运筹学建模.ppt
- 《运筹学》课程教学资源(试卷库)运筹学试题B-2006.doc
- 《运筹学》课程教学资源(试卷库)运筹学试题A-2006.doc
- 《运筹学》课程教学资源(试卷库)《系统工程与运筹学》模拟卷2.doc
- 《运筹学》课程教学资源(试卷库)《系统工程与运筹学》模拟卷1.doc
- 《运筹学》课程教学资源(试卷库)运筹学模拟试题一答案.doc
- 《运筹学》课程教学资源(试卷库)临沂师范学院数学本科期末试题3.doc
- 《运筹学》课程教学资源(试卷库)临沂师范学院数学本科期末试题2.doc
- 《运筹学》课程教学资源(试卷库)临沂师范学院数学本科期末试题1.doc
- 《运筹学》课程教学资源(试卷库)高等运筹学试题A-2006年.doc
- 《运筹学》课程教学资源(试卷库)05下运筹学试题AB.doc
- 《运筹学》课程教学资源(试卷库)05下运筹学试题AB.doc
- 《运筹学》课程教学资源(试卷库)04下运筹学试题AB.doc
- 《运筹学》课程教学资源(试卷库)03下运筹学试题AB.doc
- 《运筹学》课程教学资源(试卷库)02下运筹学试题AB.doc
- 《运筹学》课程教学资源(试卷库)《系统工程与运筹学》模拟卷3.doc
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)规划论(线性规划)运筹学3类 CONCEPTUAL PAPER WORKSHEET的简介.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)规划论(线性规划)运筹学3类 SPREADHEET MODELLING WITH EXCEL简介.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)规划论(线性规划)运筹学3类 LINEAR PROGRAMMING.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)规划论(单纯型法)运筹学1类 高阶运筹学 线性规划(单纯形法的矩阵描述及改进单纯形法介绍).ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)规划论(指派问题)运筹学2类 指派问题与运输问题 Transportation and Assignment Problems.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)规划论(目标规划)运筹学1类 目标规划.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)规划论(非线性规划)运筹学1类 最优化搜索算法的结构与一维搜索.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)规划论(非线性规划)运筹学1类 无约束最优化问题.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)规划论(非线性规划)运筹学1类 约束最优化问题.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)规划论(非线性规划)运筹学1类 高阶运筹学无约束极值问题.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)图论(图论与网络分析)运筹学3类 LINEAR PROGRAMME AND SOLVING GRAPHICALLY.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)图论(网络最优化问题)运筹学2类 网络最优化问题 Network Optimization Problems.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)图论(网络计划与项目评审)运筹学1类 用PERT、CPM进行项目管理.ppt
- 深圳大学管理学院:《运筹学》期末考试试卷2007.11运筹学试题A卷(试卷).doc
- 深圳大学管理学院:《运筹学》期末考试试卷2007.11运筹学试题A卷(答案).doc
- 深圳大学管理学院:《运筹学》期末考试试卷2007.11运筹学试题B卷(试卷).doc
- 深圳大学管理学院:《运筹学》期末考试试卷2007.11运筹学试题B卷(答案).doc
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)决策与对策(决策论)运筹学2类 决策分析 Decision Analysis.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)决策与对策(决策论)运筹学3类 A COMPARATIVE LOOK at MODELS of COMPANY.ppt
- 深圳大学管理学院:《运筹学》课程教学资源(PPT课件讲稿)决策与对策(决策论)运筹学3类 POST OPTIMALITY ANALYSIS.ppt