蚌埠医学院:《多元统计分析》(英文版) Chapter 5 Principal Components Analysis (PCA)

Chapter 5 Principal Components Analysis(PCa)
zf Chapter 5 Principal Components Analysis (PCA)

Presentation outline 今◆ What iS pCa? ☆◆ Geometrical approach to PCa 令◆ Analytical approach to PCA 今◆ Properties of pca 令◆ How to determine the number of po? How to interpret the PC? ☆◆ Use of pc scores 2021/2/22 2 cxt
2021/2/22 2 cxt Presentation Outline ❖ w What is PCA? ❖ w Geometrical approach to PCA ❖ w Analytical approach to PCA ❖ w Properties of PCA ❖ w How to determine the number of PC? ❖ w How to interpret the PC? ❖ w Use of PC scores

5.1 reasons for using principal components analysis 日 Too Many Variables Diatto ic b ood Tess凵e LT Cholestene SystolIc pressure Medication Diet i Cholestero ExeRDSE 2021/2/22 cxt
2021/2/22 3 cxt 5.1 reasons for using principal components analysis Too Many Variables

which describe income-pay. He used principle componenTs a Stone use 1929-1938 data in usa. and receive 17 variabl analysis and got three new variables F1, F2. F3. Fl, total income, F2, total income increase ratio; F3, economy increase or decrease. These new variable can use three variables ( △I、t) which can be measured directly 2021/2/22 4 cxt
2021/2/22 4 cxt Stone use 1929一1938 data in USA, and receive 17 variables which describe income-pay. He used principle component analysis and got three new variables F1、F2、F3. F1, total income;F2,total income increase ratio;F3,economy increase or decrease. These new variable can use three variables (I、 I、t )which can be measured directly

F1 F2 F3 F1 F2 F3 0 0 0.995-0.0410.057 △i 0.0560.948-0.124-0.102 t 0.369-0.282-0.836-0.414-0.1121 2021/2722 5 cxt
2021/2/22 5 cxt F1 F2 F3 i i t F1 1 F2 0 1 F3 0 0 1 i 0.995 -0.041 0.057 l Δi -0.056 0.948 -0.124 -0.102 l t -0.369 -0.282 -0.836 -0.414 -0.112 1

口 Solutions Eliminate some redundant variables May lose important information that was uniquely reflected in the eliminated variables Create composite scores from variables(sum or average) Lost variability among the variables Multiple scale scores may still be collinear Create weighted linear combinations of variables while retaining most of the variability in the data. Fewer variables. little or no lost variation 一 No collinear scales. 2021/2/22 6 cxt
2021/2/22 6 cxt Solutions Eliminate some redundant variables. – May lose important information that was uniquely reflected in the eliminated variables. Create composite scores from variables (sum or average). – Lost variability among the variables – Multiple scale scores may still be collinear Create weighted linear combinations of variables while retaining most of the variability in the data. – Fewer variables; little or no lost variation – No collinear scales

日 An Easy choice To retain most of the information in the data while reducing the number of variables you must deal with, try principal components analysis. Most of the variability in the original data can be retained. but. Components may not be directly interpretable 2021/2/22 cxt
2021/2/22 7 cxt An Easy Choice To retain most of the information in the data while reducing the number of variables you must deal with, try principal components analysis. Most of the variability in the original data can be retained. but… Components may not be directly interpretable

今 What is pca?(什么是主成分分析) o PCa is a technique for forming new variables which are linear composites of the original variables. The new variables are called principal components(PRiNS) The maximum number ofprin's that can be formed is equal to the number of original variables usually the first few PRIN's represent most of the information in the original variables and can replace the original variables and hence achieve data reduction which is the main objective of pca .s The Prins are uncorrelated among themselves and can be used in regression 2021/2/22 8 cxt
2021/2/22 8 cxt ❖ What is PCA?(什么是主成分分析) ❖ PCA is a technique for forming new variables which are linear composites of the original variables. The new variables are called principal components(PRIN’s). ❖ The maximum number of PRIN’s that can be formed is equal to the number of original variables. Usually the first few PRIN’s represent most of the information in the original variables and can replace the original variables and hence achieve data reduction, which is the main objective of PCA ❖ The PRIN’s are uncorrelated among themselves and can be used in regression

a Principal Components Analysis(PCa) is a dimension reduction method that creates variables called principal components creates as many components as there are input variables a Principal Components are weighted linear combinations of input variables are orthogonal to and independent of other components are generated so that the first component accounts for the most variation in the xs, followed by the second component, and so on 2021/2/22 cxt
2021/2/22 9 cxt Principal Components Analysis(PCA) is a dimension reduction method that creates variables called principal components creates as many components as there are input variables. Principal Components are weighted linear combinations of input variables are orthogonal to and independent of other components are generated so that the first component accounts for the most variation in the xs, followed by the second component, and so on

平移、转坐标轴 F F 2021/2/22 10 cxt
2021/2/22 10 cxt 平移、旋转坐标轴 • 1 x F2 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • F1 2 x
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 蚌埠医学院:《多元统计分析》文章及修改说明.doc
- 麻省理工学院:《应用统计学》课程教学资源(讲义)讲义.pdf
- 郑州大学:《统计学》课程教学资源(PPT课件讲稿)总量指标课件.ppt
- 郑州大学商学院:《统计学》综合指数(肖战峰).ppt
- 郑州大学:《统计学》课程教学资源(教案讲义)第六章 统计指数 Statistical Index.doc
- 《SPSS分析统计》课程教学资源(讲义)第四章 SPSS结果窗口用法详解.doc
- 《SPSS分析统计》课程教学资源(讲义)第十章 多元线性回归与曲线拟合.doc
- 《SPSS分析统计》课程教学资源(讲义)第十四章 活着Survival菜单详解(下).doc
- 《SPSS分析统计》课程教学资源(讲义)第十二章 非参数检验.doc
- 《SPSS分析统计》课程教学资源(讲义)第十三章 活着Survival菜单详解(上).doc
- 《SPSS分析统计》课程教学资源(讲义)第十一章 分类资料的回归分析.doc
- 《SPSS分析统计》课程教学资源(讲义)第六章 描述性统计分析.doc
- 《SPSS分析统计》课程教学资源(讲义)第八课:征服一般线性模型――General Linear Model菜单详解(下).doc
- 《SPSS分析统计》课程教学资源(讲义)第八课:征服一般线性模型――General Linear Model菜单详解(上).doc
- 《SPSS分析统计》课程教学资源(讲义)第五章 SPSS统计绘图功能详解.doc
- 《SPSS分析统计》课程教学资源(讲义)第二章 数据文件的管理(下).doc
- 《SPSS分析统计》课程教学资源(讲义)第二章 数据文件的管理(上).doc
- 《SPSS分析统计》课程教学资源(讲义)第九章 相关分析――Correlate菜单详解.doc
- 《SPSS分析统计》课程教学资源(讲义)第三章 程序编辑窗口用法详解.doc
- 《SPSS分析统计》课程教学资源(讲义)第七章 均数间的比较.doc
- 蚌埠医学院:《多元统计分析》第五章 主成分分析.ppt
- 蚌埠医学院:《多元统计分析》(英文版) Chapter 7 Discriminant Analysis.ppt
- 蚌埠医学院:《多元统计分析》第四章 判别分析.ppt
- 蚌埠医学院:《多元统计分析》第六章 因子分析.ppt
- 蚌埠医学院:《多元统计分析》第二章 均值向量和协方差阵的检验.ppt
- 蚌埠医学院:《多元统计分析》多元正态分布统计推断.ppt
- 蚌埠医学院:《多元统计分析》(双语版) I Univariate versus Multivariate Analysis.ppt
- 蚌埠医学院:《多元统计分析》第一讲 多元统计分析.ppt
- 蚌埠医学院:《多元统计分析》(双语版) 第二讲 多元统计分析理论基础.ppt
- 蚌埠医学院:《多元统计分析》第三讲 多元统计理论基础.ppt
- 蚌埠医学院:《多元统计分析》第七章 对应分析.ppt
- 蚌埠医学院:《多元统计分析》第三章 数据的描述.doc
- 蚌埠医学院:《多元统计分析》第五讲 数据的收集.doc
- 蚌埠医学院:《多元统计分析》第六讲 方差分析.doc
- 蚌埠医学院:《多元统计分析》第六章 试验设计与方差分析.doc
- 蚌埠医学院:《多元统计分析》(英文版) Chapter 9 Cluster analysis.ppt
- 蚌埠医学院:《多元统计分析》第三章 聚类分析.ppt
- 蚌埠医学院:《多元统计分析》第四讲 多元统计分析.doc
- 蚌埠医学院:《多元统计分析》重点二.doc
- 蚌埠医学院:《多元统计分析》重点一.doc