麻省理工学院:《电气工程与计算机科学》学习资料_Week2

Week 2 review What was covered Dissolve and diffuse 2 compartment model thin vs thick membrane measurements in cells Dissolve and diffuse Assume: dissolve is much faster than diffuse k= partition coefficient(dissolve) d= diffusivity( diffuse) O=-kD ao ac 2 compartment model V2 A=cross-sectional areaL Cl() Assume solute through well stirred baths (in baths c(x, t)=c(t)) solute is conserved(nothing is eating it up or producing it baths big compared to membrane thin membrane Steady State(SS)time constant: tss If at SS then /((t)-c2(1)=P(c(t)-ct) Fick's law for membranes P is the membrane permeability d p(x, d--a dt ( n(x, D)(where n is number of solutes) Definition of fiux From Fick's law for membranes, can get the equilibrium time constant, tEQ (see supplement for derivation) Thin vs. thick membranes When does this theory break down? Compare tss to tEQ: If tEQ >Tss then thin membrane However, if tEQ is on the order of tss then not thin membrane
Week 2 Review What was covered: - Dissolve and diffuse - 2 compartment model - thin vs. thick membrane - measurements in cells Dissolve and diffuse: Assume: dissolve is much faster than diffuse k = partition coefficient (dissolve) D = diffusivity (diffuse) f = -kD ¶c - ¶f = ¶c ¶x ¶x ¶t 2 ¶ c ¶ c = kD ¶t ¶x 2 2 compartment model A= cross-sectional area V1 c1(t) V2 d c2(t) Membrane: only lets Assume: solute through - well stirred baths (in baths c(x,t)=c(t)) - solute is conserved (nothing is eating it up or producing it) - baths big compared to membrane - thin membrane d 2 Steady State (SS) time constant: t SS = 2 p D If at SS then: Dk f = (c1 (t) - c2 (t)) = P(c1 (t) - c 2 t)) Fick’s law for membranes d P is the membrane permeability 1 d f (x, t) = - � (n(x, t)) (where n is number of solutes) Definition of flux A dt From Fick’s law for membranes, can get the equilibrium time constant, tEQ: 1 t EQ = (see supplement for derivation) � 1 1 � AP� � Ł V1 + V2 ł � � Thin vs. thick membranes When does this theory break down? Compare tSS to tEQ: If tEQ>>tSS then thin membrane… However, if tEQ is on the order of tSS then not thin membrane:

What does this mean 1. time to get to Ss cannot be ignored 2. concentration in baths will change significantly before reaching SS 3. amount of solute in membrane might not be negligible 4. overall time profiles of concentration/flux are NOT exponentials(can't reduce to Ficks law for membranes so profiles are not solutions to 1 order linear differential equation) Measurements (To measure time constant of exponential curve: extend a line at initial time and intersecting with the asymptote.. see problem set 1) N How to measure tss? On SMall time scale 1. look at plot of concentration profile in membrane(remember: on short time scale, only membrane concentration is changing; bath concentrations are not changing significantly at this point 2. look at plot of o (t) How to mea On large time scale look at plots of concentration. (in bath or membrane) 2. look at plot of o (t) If you aren t comfortable with figuring out time constants and stuff like that from concentration and flux plots review problem 4 and5 on pset #2 and practice with the simulation software..(and if you are still confused, feel free to ask us(the tas) questions!! @) More measurements Be comfortable with the plots Prof. Freeman put up in lecture which kind of look like this See pg. 145 in the text for nicer graph where P is the permeability of a solute and k is the partitioning coefficient M<60 060<M<160 ■M160 What do these show
What does this mean: 1. time to get to SS cannot be ignored 2. concentration in baths will change significantly before reaching SS 3. amount of solute in membrane might not be negligible 4. overall time profiles of concentration/flux are NOT exponentials (can’t reduce to Fick’s law for membranes so profiles are not solutions to 1st order linear differential equation) Measurements: (To measure time constant of exponential curve: extend a line at initial time and intersecting with the asymptote… see problem set 1) c or f t exponential curve t How to measure tSS? On SMALL time scale: 1. look at plot of concentration profile in membrane (remember: on short time scale, only membrane concentration is changing; bath concentrations are not changing significantly at this point.) 2. look at plot of f(t) How to measure tEQ? On LARGE time scale: 1. look at plots of concentration. (in bath or membrane) 2. look at plot of f(t) If you aren’t comfortable with figuring out time constants and stuff like that from concentration and flux plots review problem 4 and5 on pset #2 and practice with the simulation software… (and if you are still confused, feel free to ask us (the Tas) questions!! ☺ ) More measurements: Be comfortable with the plots Prof. Freeman put up in lecture which kind of look like this: See pg. 145 in the text for nicer graph: where P is the permeability of a solute and k P is the partitioning coefficient. k * * * * * M160 What do these show:

1. since linearly P is linearly dependent on partition coefficient(which was ured in oil), membrane is lipid 2. bigger solutes(M larger) diffuse more slowly(plot above assumed D was the for all solute) 3. if there is a solute that is really off from line(even when you take m into account), probably has specialized transport mechanism in the cell
1. since linearly P is linearly dependent on partition coefficient (which was measured in oil), membrane is lipid 2. bigger solutes (M larger) diffuse more slowly (plot above assumed D was the same for all solute) 3. if there is a solute that is really off from line (even when you take M into account), probably has specialized transport mechanism in the cell
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 麻省理工学院:《电气工程与计算机科学》学习资料_osmosisequations.pdf
- 麻省理工学院:《电气工程与计算机科学》学习资料_Week8.pdf
- 麻省理工学院:《电气工程与计算机科学》学习资料_diffusionequations.pdf
- GE Fanuc Automation:可编程的控制器(英文)_VersaPro Programming Software Preview.ppt
- GE Fanuc Automation:可编程的控制器(英文)_plc_30(Series 90 -30 Programmable Controller).ppt
- 《线性电路——模拟电子技术基础》第五章 反馈放大电路.ppt
- 《线性电路——模拟电子技术基础》第四章 放大电路基础.ppt
- 《线性电路——模拟电子技术基础》第三章 场效应管.ppt
- 《线性电路——模拟电子技术基础》第二章 半导体三极管.ppt
- 《线性电路——模拟电子技术基础》第一章 半导体二极管及其基本电路.ppt
- 《线性电路——模拟电子技术基础》第六章 信号的运算与处理电路.ppt
- 《电工电子技术基础》课程教学资源(PPT课件教案)磁路和变压器(李中发).ppt
- 《电工电子技术基础》课程PPT教学课件(电力系统稳态分析)短路计算.pdf
- 《电工电子技术基础》课程PPT教学课件(电力系统稳态分析)电路的分析方法.ppt
- 《电工电子技术基础》课程教学资源(PPT课件教案)电路分析方法(李中发).ppt
- 北京建筑工程学院:《电工电子技术基础——电力系统稳态分析》_电气主接线.ppt
- 《电工电子技术基础》课程教学资源(PPT课件教案)电动机(李中发).ppt
- 广西大学:《电工电子技术基础——电力系统稳态分析》PPT电子教案.ppt
- 《电工电子技术基础》课程教学讲义(电力系统稳态分析)电力系统稳态分析.doc
- 《电工电子技术基础》课程教学资源(PPT课件教案)正弦电路分析(李中发).ppt
- 麻省理工学院:《电气工程与计算机科学》学习资料_Week3.pdf
- 麻省理工学院:《电气工程与计算机科学》学习资料_Week6.pdf
- 麻省理工学院:《电气工程与计算机科学》学习资料_Week11.pdf
- 一阶电路与二阶电路(PPT讲义课件).ppt
- 解放军信息工程大学:《MATLAB实用教程》PPT完整教案课件(共十九章).ppt
- 解放军信息工程大学:《自动控制原理——基于MATLAB仿真》课程教案_第1章 绪论.pdf
- 解放军信息工程大学:《自动控制原理——基于MATLAB仿真》课程教案_第2章 控制系统的数学模型.pdf
- 解放军信息工程大学:《自动控制原理——基于MATLAB仿真》课程教案_第3章 控制系统的时域分析.pdf
- 解放军信息工程大学:《自动控制原理——基于MATLAB仿真》课程教案_第4章 控制系统的根轨迹.pdf
- 解放军信息工程大学:《自动控制原理——基于MATLAB仿真》课程教案_第5章 控制系统的频域分析.pdf
- 解放军信息工程大学:《自动控制原理——基于MATLAB仿真》课程教案_第6章 控制系统的设计和校正.pdf
- 机械工业出版社:《电力拖动自动控制系统》教材课程PPT教学课件(运动控制系统)第1篇 直流拖动控制系统 第1章 闭环控制的直流调速系统.ppt
- 机械工业出版社:《电力拖动自动控制系统》教材课程PPT教学课件(运动控制系统)第1篇 直流拖动控制系统 第1章 闭环控制的直流调速系统.ppt
- 机械工业出版社:《电力拖动自动控制系统》教材课程PPT教学课件(运动控制系统)第1篇 直流拖动控制系统 第2章 转速、电流双闭环直流调速系统和调节器的工程设计方法.ppt
- 机械工业出版社:《电力拖动自动控制系统》教材课程PPT教学课件(运动控制系统)第1篇 直流拖动控制系统 第3章 直流调速系统的数字控制.ppt
- 机械工业出版社:《电力拖动自动控制系统》教材课程PPT教学课件(运动控制系统)第1篇 直流拖动控制系统 第4章 可逆调速系统和位置随动系统.ppt
- 机械工业出版社:《电力拖动自动控制系统》教材课程PPT教学课件(运动控制系统)第2篇 交流拖动控制系统 第5章 闭环控制的异步电动机变压调速系统(一种转差功率消耗型调速系统).ppt
- 机械工业出版社:《电力拖动自动控制系统》教材课程PPT教学课件(运动控制系统)第2篇 交流拖动控制系统 第6章 笼型异步电机变压变频调速系统(VVVF系统)——转差功率不变型调速系统.ppt
- 机械工业出版社:《电力拖动自动控制系统》教材课程PPT教学课件(运动控制系统)第2篇 交流拖动控制系统 第7章 绕线转子异步电机双馈调速系统——转差功率馈送型调速系统.ppt
- 机械工业出版社:《电力拖动自动控制系统》教材课程PPT教学课件(运动控制系统)第2篇 交流拖动控制系统 第8章 同步电动机变压变频调速系统.ppt