麻省理工学院:《电气工程与计算机科学》学习资料_Week8

Week 8 Review What was covered pace clamp Current clamp Voltage clamp Hodgkin-Huxley Model Review of last week lectrically small cell vS electrically small cell Graded potential vs. Action potential Decrement conduction vs. Decrement-free conduction pace clam S How to transform an electrically large cell into an electrically small cell? Remember the core conductor model? is the same as saying that the conduction velocity is infinite In an electrically small cell, the potential is everywhere(in space) the same. In a way this Conduction velocity is inversely proportional to the internal and external resistance, ri and ro. In most experiments, ro is very small(sea water). Therefore, if you make ri very small (by inserting a highly conducting wire into the cell), you can make the conduction velocity very very large (i.e. basically infinite on the length scale of the cell and the time scale of the experiment Current Clamp lin We can control the current across the membrane Therefore, we can stimulate with a current pulse and determine if the cell generates an ACTION POTENTIAL What did we learn from current clamp 1. threshold 3. accommodation 4. all the other properties of AP
Week 8 Review What was covered: - Space clamp - Current clamp - Voltage clamp - Hodgkin-Huxley Model Review of last week: Electrically small cell vs. electrically small cell Graded potential vs. Action potential Decrement conduction vs. Decrement-free conduction Space Clamp: How to transform an electrically large cell into an electrically small cell? Remember the core conductor model? In an electrically small cell, the potential is everywhere (in space) the same. In a way this is the same as saying that the conduction velocity is infinite. Conduction velocity is inversely proportional to the internal and external resistance, ri and ro. In most experiments, ro is very small (sea water). Therefore, if you make ri very small (by inserting a highly conducting wire into the cell), you can make the conduction velocity very very large (i.e. basically infinite on the length scale of the cell and the time scale of the experiment) Current Clamp: Iin We can control the current across the membrane. Therefore, we can stimulate with a current pulse and determine if the cell generates an ACTION POTENTIAL. What did we learn from current clamp: 1. threshold 2. refractory 3. accommodation 4. all the other properties of AP

Voltage Clamp ry to understand how cell generates an action potential by control potential across the membrane However, since you are controlling the membrane potential there are NO ACTION POTENTIALS generated in voltage clamp But useful because we can study the current flow through membrane m=Jc +Jion=Jc Jna+Jk+JL): So what did we learn from voltage clamp 1. Assume Gl is -constant 2. initial current transient to Vm step is Jna(m has the fastest time constant) 3. direction of current flow depends on the"drive"(Vm-Vna) 4. after sometime inactivation()starts and Gna goes down Jna goes down 5. at rest, Jk has the biggest effect( Gk is much bigger than others) Hodgkin-Huxley Model Using what was learned from the voltage clamp, we get the Hh model J Potassium and Sodium conductance depend on the membrane voltage. Vk and Vna do not change with an aP since very little ions are actually transported Jm=Cm m+G(m, I( -Vx)+GN,OOm-VNa)+G(m-V) And now we can fill in the black box in the Core Conductor with Hodgkin-huxley models
Voltage Clamp: Try to understand how cell generates an action potential by control potential across the membrane. + _ However, since you are controlling the membrane potential: there are NO ACTION POTENTIALS generated in voltage clamp. But useful because we can study the current flow through membrane (Jm = Jc +Jion = Jc + Jna+Jk+JL): So what did we learn from voltage clamp: 1. Assume GL is ~constant. 2. initial current transient to Vm step is Jna (m has the fastest time constant) 3. direction of current flow depends on the “drive” (Vm-Vna) 4. after sometime inactivation (h) starts and Gna goes down � Jna goes down 5. at rest, Jk has the biggest effect (Gk is much bigger than others) Hodgkin-Huxley Model: Using what was learned from the voltage clamp, we get the HH model: GK GNa GL + VK � + VNa � + VL � Jm CM + Vm � Potassium and Sodium conductance depend on the membrane voltage. Vk and Vna do not change with an AP since very little ions are actually transported… m Jm = Cm ¶V +GK (Vm , t)(Vm -VK ) + GNa (Vm , t)(Vm -VNa ) + GL (Vm -VL ) ¶t And now we can fill in the black box in the Core Conductor with Hodgkin-Huxley models:

2na(r +o)v2 arc avm+Gx(m,I)(m-Vk)+GNa(m DOm-VNa)+GL(m-V) a-p So how do the conductances(Gna and Gk), depend on Vm? GK m, n=Grn(n, 1) where Gk is a constant and only n depends on time and vm (n,1)=Gm(n,1)h(Vn,) where GNa is a constant and m and h depends on time and vm If Vm is kept constant(like in voltage clamp), n, m, and h are just exponential functions of time. Their final value and their time constants depend only on vm n and m go up with Vm and h goes down with Vm n has a much faster time constant 3(ms) 100-75-50-25255075-100-75-50-2 0.2 100-75-50-25 255075 (m2,1)+n(Vn) =n2(m) m(m )+Im(m)at=m
2 2pa(ri 1 + ro )v 2 ¶ V 2 m = Cm ¶ ¶ V t m +GK (Vm , t)(Vm -VK ) + GNa (Vm , t)(Vm -VNa ) + GL (Vm -VL ) ¶t So how do the conductances (Gna and Gk), depend on Vm? GK (Vm , t) = GK n4 (Vm , t) where GK is a constant and only n depends on time and Vm. GNa (Vm , t) = GNam3 (Vm , t)h(Vm , t) where GNa is a constant and m and h depends on time and Vm. If Vm is kept constant (like in voltage clamp), n, m, and h are just exponential functions of time. Their final value and their time constants depend only on Vm. n and m go up with Vm and h goes down with Vm. n has a much faster time constant. t t t t ¥ ¥ ¥ n(Vm , t) + t n (Vm ) ¶n(Vm , t) = n¥ (Vm ) ¶t m(Vm , t) + t m (Vm ) ¶m(Vm , t) = m¥ (Vm ) ¶t h(Vm , t) + t h (Vm ) ¶h(Vm , t) = h¥ (Vm ) ¶t
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 麻省理工学院:《电气工程与计算机科学》学习资料_diffusionequations.pdf
- GE Fanuc Automation:可编程的控制器(英文)_VersaPro Programming Software Preview.ppt
- GE Fanuc Automation:可编程的控制器(英文)_plc_30(Series 90 -30 Programmable Controller).ppt
- 《线性电路——模拟电子技术基础》第五章 反馈放大电路.ppt
- 《线性电路——模拟电子技术基础》第四章 放大电路基础.ppt
- 《线性电路——模拟电子技术基础》第三章 场效应管.ppt
- 《线性电路——模拟电子技术基础》第二章 半导体三极管.ppt
- 《线性电路——模拟电子技术基础》第一章 半导体二极管及其基本电路.ppt
- 《线性电路——模拟电子技术基础》第六章 信号的运算与处理电路.ppt
- 《电工电子技术基础》课程教学资源(PPT课件教案)磁路和变压器(李中发).ppt
- 《电工电子技术基础》课程PPT教学课件(电力系统稳态分析)短路计算.pdf
- 《电工电子技术基础》课程PPT教学课件(电力系统稳态分析)电路的分析方法.ppt
- 《电工电子技术基础》课程教学资源(PPT课件教案)电路分析方法(李中发).ppt
- 北京建筑工程学院:《电工电子技术基础——电力系统稳态分析》_电气主接线.ppt
- 《电工电子技术基础》课程教学资源(PPT课件教案)电动机(李中发).ppt
- 广西大学:《电工电子技术基础——电力系统稳态分析》PPT电子教案.ppt
- 《电工电子技术基础》课程教学讲义(电力系统稳态分析)电力系统稳态分析.doc
- 《电工电子技术基础》课程教学资源(PPT课件教案)正弦电路分析(李中发).ppt
- 北京建筑工程学院:《电工电子技术基础——电力系统稳态分析》_断路器.ppt
- 《电工电子技术基础》课程PPT教学课件(电力系统稳态分析)第三章 变压器(1/2).ppt
- 麻省理工学院:《电气工程与计算机科学》学习资料_osmosisequations.pdf
- 麻省理工学院:《电气工程与计算机科学》学习资料_Week2.pdf
- 麻省理工学院:《电气工程与计算机科学》学习资料_Week3.pdf
- 麻省理工学院:《电气工程与计算机科学》学习资料_Week6.pdf
- 麻省理工学院:《电气工程与计算机科学》学习资料_Week11.pdf
- 一阶电路与二阶电路(PPT讲义课件).ppt
- 解放军信息工程大学:《MATLAB实用教程》PPT完整教案课件(共十九章).ppt
- 解放军信息工程大学:《自动控制原理——基于MATLAB仿真》课程教案_第1章 绪论.pdf
- 解放军信息工程大学:《自动控制原理——基于MATLAB仿真》课程教案_第2章 控制系统的数学模型.pdf
- 解放军信息工程大学:《自动控制原理——基于MATLAB仿真》课程教案_第3章 控制系统的时域分析.pdf
- 解放军信息工程大学:《自动控制原理——基于MATLAB仿真》课程教案_第4章 控制系统的根轨迹.pdf
- 解放军信息工程大学:《自动控制原理——基于MATLAB仿真》课程教案_第5章 控制系统的频域分析.pdf
- 解放军信息工程大学:《自动控制原理——基于MATLAB仿真》课程教案_第6章 控制系统的设计和校正.pdf
- 机械工业出版社:《电力拖动自动控制系统》教材课程PPT教学课件(运动控制系统)第1篇 直流拖动控制系统 第1章 闭环控制的直流调速系统.ppt
- 机械工业出版社:《电力拖动自动控制系统》教材课程PPT教学课件(运动控制系统)第1篇 直流拖动控制系统 第1章 闭环控制的直流调速系统.ppt
- 机械工业出版社:《电力拖动自动控制系统》教材课程PPT教学课件(运动控制系统)第1篇 直流拖动控制系统 第2章 转速、电流双闭环直流调速系统和调节器的工程设计方法.ppt
- 机械工业出版社:《电力拖动自动控制系统》教材课程PPT教学课件(运动控制系统)第1篇 直流拖动控制系统 第3章 直流调速系统的数字控制.ppt
- 机械工业出版社:《电力拖动自动控制系统》教材课程PPT教学课件(运动控制系统)第1篇 直流拖动控制系统 第4章 可逆调速系统和位置随动系统.ppt
- 机械工业出版社:《电力拖动自动控制系统》教材课程PPT教学课件(运动控制系统)第2篇 交流拖动控制系统 第5章 闭环控制的异步电动机变压调速系统(一种转差功率消耗型调速系统).ppt
- 机械工业出版社:《电力拖动自动控制系统》教材课程PPT教学课件(运动控制系统)第2篇 交流拖动控制系统 第6章 笼型异步电机变压变频调速系统(VVVF系统)——转差功率不变型调速系统.ppt