清华大学:《材料科学基础》课程教学资源(PPT课件讲稿)Chapter 2.5 Indices of crystal planes and directions

32.5 Indices of crystal planes and directions I What's crystal planes and direct i ons? The atomic planes and directions passing through the crystal are called(crystal) planes and directions espectively
§2.5 Indices of crystal planes and directions ◆Ⅰ.What’s crystal planes and directions? The atomic planes and directions passing through the crystal are called (crystal) planes and directions respectively

◆‖.P| ane indices 1. Steps to determinate the plane indices O Establish a set of coordinate axes 2 Find the intercepts of the planes to be indexed on a, b and c axes (r,y,=) b
1. Steps to determinate the plane indices: Establish a set of coordinate axes Find the intercepts of the planes to be indexed on a, b and c axes (x, y, z). a c b x y z ◆Ⅱ. Plane indices

3 Take the reciprocals of the intercepts 1/x, 1/y, 1/z 4 Clear fractions but do not reduce to lowest integers 5 Enclose them in parentheses,(h k1) EXample:1/2,1,2/3->2,1,3/2-(423) Plane indices referred to three axes a b and c are also called miller Indices
Take the reciprocals of the intercepts 1/x, 1/y, 1/z. Clear fractions but do not reduce to lowest integers. Enclose them in parentheses, (h k l) Example: 1/2,1,2/3 2,1,3/2 (423) Plane indices referred to three axes a, b and c are also called Miller Indices

Several important aspects of the Miller indices for planes should be noted Planes and their negatives are identical. Therefore(020)=(020) e Planes and their multiples are not identical 3 In cubic systems, a direction that has the same indices as a plane is perpendicular to that plane
Several important aspects of the Miller indices for planes should be noted: Planes and their negatives are identical. Therefore . Planes and their multiples are not identical. In cubic systems, a direction that has the same indices as a plane is perpendicular to that plane. (020) = (020)

2. The important planes in cubic crystals (00 (110) (111 112)
2. The important planes in cubic crystals (110) (112) (111) (001)

3. A family of planes consists of equivalent planes so far as the atom arrangement is concerned 10}=(110)+(110)+(101)+ (101)+(011)+(01 Total: 6 111=(111)+(111)+(111)+ Total: 4
3. A family of planes consists of equivalent planes so far as the atom arrangement is concerned. (101) (011) (011) {110} (110) (110) (101) + + = + + + Total: 6 (111) {111} = (111) + (111) + (111) + Total: 4

112}=(112)+(112)+(112)+(112)+ (121)+(121)+(121)+(121)+ (211)+(211)+(211)+(211) otal 123}=(123)+(123)+(123)+(123)+(132)+ 132)+(132)+(132)+(231)+(231)+ (231)+(231)+(213)+(213)+(213)+ 213)+(312)+(312)+(312)+(312)+ (321)+(321)+(321)+(321) Tota:4×3!=24
(211) (211) (211) (211) (121) (121) (121) (121) {112} (112) (112) (112) (112) + + + + + + + = + + + + (321) (321) (321) (321) (213) (312) (312) (312) (312) (231) (231) (213) (213) (213) (132) (132) (132) (231) (231) {123} (123) (123) (123) (123) (132) + + + + + + + + + + + + + + + + + + = + + + + + Total: 12 Total: 4×3!=24

l. Direction Indices 1. Derivation for the crystallographic direction o As the first above, set the origin on the direction to be indexed (2 Find the coordinates of another point on the direction in questions 3 Reduce to three smallest integers: u, v, w (4 Enclose in square brackets Ju vwI
◆ Ⅲ. Direction Indices 1. Derivation for the crystallographic direction ① As the first above, set the origin on the direction to be indexed. ② Find the coordinates of another point on the direction in questions. ③ Reduce to three smallest integers: u, v, w. ④ Enclose in square brackets [u v w]

2. The important direction in cubic crystals : crystal axes : face diagonal : body diagonal : apices to opposite face-centers 3. Family of directions consists of crystallographically equivalent directions, denoted e9.[1001+[010]+[001+ [100]+[010]+[001]
2. The important direction in cubic crystals: : crystal axes : face diagonal : body diagonal : apices to opposite face-centers 3. Family of directions consists of crystallographically equivalent directions, denoted e.g. [100] [010] [001] 100 [100] [010] [001] + + = + + +

32.6 Hexagonal axes for hexagonal crystals Why choose four -ax is system? Four indices has been devised for hexagonal unit cells because of the unique symmetry of the system
§2.6 Hexagonal axes for hexagonal crystals ◆ Ⅰ. Why choose four-axis system? Four indices has been devised for hexagonal unit cells because of the unique symmetry of the system
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 清华大学:《材料科学基础》课程教学资源(PPT课件讲稿)Chapter 2.3 Crystal Structure and Complex Lattice.ppt
- 清华大学:《材料科学基础》课程教学资源(PPT课件讲稿)Chapter 1 .2 Atomic bonding.ppt
- 清华大学:《材料科学基础》课程教学资源(PPT课件讲稿)Chapter 1 Atomic Structure and Bonding.ppt
- 清华大学:《材料科学基础》课程教学资源(教案讲义)教学内容 Fundamental of Materials.doc
- 东北林业大学:《建筑工程定额原理与概预算》第4章 建筑工程施工图预算续.ppt
- 东北林业大学:《建筑工程定额原理与概预算》第4章 建筑工程施工图预算上.ppt
- 东北林业大学:《建筑工程定额原理与概预算》第3章 建筑安装工程定额.ppt
- 东北林业大学:《建筑工程定额原理与概预算》第2章 工程造价构成.ppt
- 东北林业大学:《建筑工程定额原理与概预算》第1章 绪论.ppt
- 南阳理工学院:《混凝土结构》第十三章 钢筋混凝土框架.ppt
- 南阳理工学院:《混凝土结构》第十二讲 单层厂房.ppt
- 南阳理工学院:《混凝土结构》第十一章 梁板结构.ppt
- 南阳理工学院:《混凝土结构》第十章 预应力混凝土的原理及计算规定.ppt
- 南阳理工学院:《混凝土结构》第九章 变形和裂缝宽度的计算.ppt
- 南阳理工学院:《混凝土结构》第八章 受扭构件.ppt
- 南阳理工学院:《混凝土结构》第七章 受拉构件.ppt
- 南阳理工学院:《混凝土结构》第六章 受压构件承载力计算.ppt
- 南阳理工学院:《混凝土结构》第五章 受弯构件斜截面承载力计算.ppt
- 南阳理工学院:《混凝土结构》第四章 受弯构件正截面承载力计算.ppt
- 南阳理工学院:《混凝土结构》第三章 极限状态设计原则.ppt
- 清华大学:《材料科学基础》课程教学资源(PPT课件讲稿)Chapter 2.1 Space Lattice.ppt
- 清华大学:《材料科学基础》课程教学资源(PPT课件讲稿)Chapter 2.7 Some Important.ppt
- 清华大学:《材料科学基础》课程教学资源(PPT课件讲稿)Chapter 3. 1 Basic concepts of al loys.ppt
- 清华大学:《材料科学基础》课程教学资源(PPT课件讲稿)Chapter 2.9 Some Additional Terminology.ppt
- 清华大学:《材料科学基础》课程教学资源(PPT课件讲稿)Chapter 3. 6 Intermetal l ic Compounds.ppt
- 清华大学:《材料科学基础》课程教学资源(PPT课件讲稿)Chapter 3. 4 Some Rules Governing the Ionic Compounds.ppt
- 清华大学:《材料科学基础》课程教学资源(PPT课件讲稿)Chapter 3.10 Silicates.ppt
- 清华大学:《材料科学基础》课程教学资源(PPT课件讲稿)Chapter 4.1 Introduction.ppt
- 清华大学:《材料科学基础》课程教学资源(PPT课件讲稿)Chapter 3 Application of Schmid's law.ppt
- 清华大学:《材料科学基础》课程教学资源(PPT课件讲稿)Chapter 4. 4 Rotation of Crystal dur ing SIip.ppt
- 清华大学:《材料科学基础》课程教学资源(PPT课件讲稿)Chapter 4.8 TwinnIng.ppt
- 清华大学:《材料科学基础》课程教学资源(PPT课件讲稿)Chapter 4.9 Comparison Between Slip and Twinning.ppt
- 清华大学:《材料科学基础》课程教学资源(PPT课件讲稿)Chapter 5.1 Introduction.ppt
- 清华大学:《材料科学基础》课程教学资源(PPT课件讲稿)Chapter 5.6 Dislocation in Motion.ppt
- 清华大学:《材料科学基础》课程教学资源(PPT课件讲稿)Chapter 5. 3 Origin of Concept for Dislocation.ppt
- 清华大学:《材料科学基础》课程教学资源(PPT课件讲稿)Chapter 5. 8 The Stress Around a Dislocation.ppt
- 清华大学:《材料科学基础》课程教学资源(PPT课件讲稿)Chapter 5. 10 Forces on dislocation.ppt
- 清华大学:《材料科学基础》课程教学资源(PPT课件讲稿)Chapter 5.16 Dislocation in FCC crystals.ppt
- 清华大学:《材料科学基础》课程教学资源(PPT课件讲稿)Chapter 5. 12 Interaction between.ppt
- 清华大学:《材料科学基础》课程教学资源(PPT课件讲稿)Chapter 5. 14 Pile up of Dislocation.ppt