上海交通大学:《对流换热 Convection Heat Transfer》教学资源_分类视图_Chapter 7 External Flow:The Flat Plate in Parallel Flow Section 7.1 through 7.3

Chapter 7(I) External Flow: The Flat Plate in Parallel Flow Chapter 7 Section 7.1 through 7.3
External Flow: The Flat Plate in Parallel Flow Chapter 7 Section 7.1 through 7.3 Chapter 7(I)

The Problem of Convection Heat transfer Mass transfer Nu,=f(x',Re,,Pr)Sh,=f(x',Re,.Sc Nux=f(Rex:Pr) Shx =f(Res:Sc) Experimental (Empirical)approach----perform measurements Theoretical approach----solve equations
The Problem of Convection ( ) *,Re ,Pr Nu f x x x = Nu f x = (Re ,Pr x ) Heat transfer Mass transfer ( ) *,Re , x x Sh f x Sc = Sh f Sc x = (Re , x ) Experimental (Empirical) approach ----perform measurements Theoretical approach ----solve equations

The Empirical Method o T I-E=q=hA (Ts-T) Experiment for measuring -Ts As NuL =CRe"Pr" Insulation 7=☑+Z Film T for properties E 2 NuL C RetmPr NuL C Re Log NuL Log ( Log ReL Log ReL (a) (b)
The Empirical Method Experiment for measuring h L Re Pr m n L Nu C= L 2 s f T T T + ∞ = Film T for properties

Physical Features Physical Features Laminar Turbulent 8(x) External flow,the boundary layers develop freely without constraint. Boundary layer conditions may be entirely laminar,laminar and turbulent,or entirely turbulent
Physical Features Physical Features • External flow, the boundary layers develop freely without constraint. • Boundary layer conditions may be entirely laminar, laminar and turbulent, or entirely turbulent

Flow conditions To determine the conditions,compute Re,=PuLut U V and compare with the critical Reynolds number for transition to turbulence, Relaminar flow throughout Re>Re>transition to turbulent flow ·Value of Rex.e depends on free stream turbulence and surface roughness. Nominally, Rexe≈5xl03
Flow conditions • To determine the conditions, compute and compare with the critical Reynolds number for transition to turbulence, ReL ρuL uL μ ν ∞ ∞ = = , Re Re laminar flow throughout L xc → transition to turbulent flow • Value of Rex,c depends on free stream turbulence and surface roughness. Nominally, 5 , Re . 5 10 x c ≈ ×

o Surface thermal conditions are commonly idealized as being of uniform temperature T or uniform heat flux Thermal boundary layer development may be delayed by an unheated starting length. Ts=To Ts>T x=L X Equivalent surface and free stream temperatures forx
• Surface thermal conditions are commonly idealized as being of uniform temperature or uniform heat flux . Ts s q′′ • Thermal boundary layer development may be delayed by an unheated starting length. Equivalent surface and free stream temperatures for and uniform (or ) for x ξ

Similarity Solution Similarity Solution for Laminar. Constant-Property Flow over an Isothermal plate Based on premise that the dimensionless x-velocity component,u/u, and temperature,T=(T-T)/(T-T),can be represented exclusively in terms of a dimensionless similarity parameter n=y(u /vx)v2 Similarity permits transformation of the partial differential equations associated with the transfer of x-momentum and thermal energy to ordinary differential equations of the form df *f an 2 an d'f=0 where (ulu)=df/dn,and dn2 2
Similarity Solution Similarity Solution for Laminar, Constant-Property Flow over an Isothermal Plate • Based on premise that the dimensionless x-velocity component, , and temperature, , can be represented exclusively in terms of a dimensionless similarity parameter u u/ ∞ ( ) ( ) * / T TT T T s s ∞ ≡− − ⎡ ⎤ ⎣ ⎦ ( )1/2 η ≡ y u x ∞ /ν • Similarity permits transformation of the partial differential equations associated with the transfer of x-momentum and thermal energy to ordinary differential equations of the form 3 2 3 2 2 0 df df f d d η η + = where / / , ( ) u u df d ∞ ≡ η and 2 * * 2 Pr 0 2 d T dT f d d η η + =

Similarity Solution(cont.) Subject to prescribed boundary conditions,numerical solutions to the momentum and energy equations yield the following results for important local boundary layer parameters: with u/u =0.99 at n=5.0, 5.0 5x 6= 1/2 (Re,)v2 with ,yl Bu =uuu。/x dn 7=0 and df1dnl。=0.332, C.=2=064Re pu12 -with h.=gg1(.亿-T)=kaT'/a,。=k(u./w)dr'/d切,o and dTd.332 P for Pr.6 =0.332Re2prv3 and Nus=k =Prl/3
Similarity Solution (cont.) • Subject to prescribed boundary conditions, numerical solutions to the momentum and energy equations yield the following results for important local boundary layer parameters: ( ) ( ) 1/2 1/2 - with / 0.99 at 5. 5.0 5 / 0, Rex x u vx u u η δ ∞ ∞ = = = = 2 2 0 0 - with / s y u d f u u vx y d η τμ μ η ∞ ∞ = = ∂ = = ∂ 2 2 0 and / 0.332, df d η η = = , 1/2 , 2 0.664Re / 2 x s x Cf x uτρ − ∞ ≡ = ( ) ( ) * * 1/2 0 0 - with / / / / xss y h q T T k T y k u vx dT d η ∞ ∞ η = = = − =∂ ∂ = ′′ * 1/3 0 and / 0.332 Pr for Pr 0.6, dT d η η = = > 1/2 1/3 0.332 Re Pr x x x h x Nu k = = 1/3 r and P t δ δ =

Similarity Solution(cont.) Average Boundary Layer Parameters: C.=1.328 Re2 瓦=h,dx Nux =0.664 Rel2 Pr/3 The effect of variable properties may be considered by evaluating all properties at the film temperature. T= s+To 2
Similarity Solution (cont.) • Average Boundary Layer Parameters: , 0 1 x s x sdx x τ ≡ ∫ τ 1/2 , 1.328 Re x f x C − = 0 1 x x x h x = ∫ h dx 1/2 1/3 x 0.664 Re Pr Nu = x • The effect of variable properties may be considered by evaluating all properties at the film temperature. 2 s f T T T + ∞ =

Turbulent Flow Turbulent Flow ·Local Parameters: Empirical Cf.x=0.0592Re,15 Correlations Nu,=0.0296Re5pr/ ·Average Parameters: 瓦.=(hnk+hnsr) Substituting expressions for the local coefficients and assuming Res.=5x105, 0.0741742 For Res=0 or L>(Re>Rex.), ReL C.L=0.074 Rez5 NuL=(0.037Re5-871)Pr3 NuL =0.037 Re4/5 Pr/3
Turbulent Flow Turbulent Flow • Local Parameters: 1/5 , 4/5 1/3 0.0592 Re 0.0296 Re Pr f x x x x C Nu − = = Empirical Correlations • Average Parameters: ( 0 1 ) 1 c c x L L am t x urb h h dx h dx L = + ∫ ∫ Substituting expressions for the local coefficients and assuming 5 Re 5 10 x,c = × , , 1/5 0.074 1742 Re Re f L L L C = − ( ) 4/5 1/3 L 0.037 Re 871 Pr Nu = − L , , ( ) 1/5 , 4/5 1/3 For Re 0 or Re Re , 0.074 Re 0.037 Re Pr x c c L x c f L L L L L x C Nu − = = =
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 上海交通大学:《对流换热 Convection Heat Transfer》教学资源_分类视图_Chapter 6 Principles of Convection.pdf
- 《过程设备设计基础》课程教学资源(相关标准文献)《铝制设备》PDF电子资料(电子书,共六章).pdf
- 《过程设备设计基础》课程教学资源(相关标准文献)国家质量技术监督局《压力容器安全技术监察规程》质技监局锅发[1999]154号.pdf
- 《过程设备设计基础》课程教学资源(相关标准文献)标准化小资料.doc
- 《过程设备设计基础》课程教学资源(相关标准文献)压力容器设计中有关标准问题的探讨.doc
- 《过程设备设计基础》课程教学资源(相关标准文献)压力容器标准专题文章.doc
- 《过程设备设计基础》课程教学资源(相关标准文献)压力容器技术委员会新闻.doc
- 《过程设备设计基础》课程教学资源(相关标准文献)HG20592~20635 法兰.pdf
- 《过程设备设计基础》课程教学资源(相关标准文献)HG20580~20585 六合一标准.pdf
- 《过程设备设计基础》课程教学资源(相关标准文献)2000年压力容器相关标准更新信息.doc
- 《过程设备设计基础》课程教学资源(相关标准文献)1999年压力容器相关标准更新信息.doc
- 《过程设备设计基础》课程教学资源(相关标准文献)中华人民共和国国家标准(GB 150—1998)钢制压力容器 Steel pressure vessels.pdf
- 《过程设备设计基础》课程教学资源(相关标准文献)设计手册3.pdf
- 《过程设备设计基础》课程教学资源(相关标准文献)设计手册2.pdf
- 《过程设备设计基础》课程教学资源(相关标准文献)中华人民共和国国家标准(GB l51—1999)管壳式换热器 Tubular heat exchangers.pdf
- 《过程设备设计基础》课程教学资源(相关标准文献)HG20652-1998 塔器设计技术规定.pdf
- 《过程设备设计基础》课程教学资源(相关标准文献)中华人民共和国国家标准(GB l51—1999)管壳式换热器 Tubular heat exchangers.pdf
- 《过程设备设计基础》课程教学资源(相关标准文献)设计手册1.pdf
- 《过程设备设计基础》课程教学资源(PPT讲座)翟俊霞(南京工业大学)化工过程机械敏捷制造系统.doc
- 《过程设备设计基础》课程教学资源(PPT讲座)周帼彦(南京工业大学)以设计为中心的虚拟制造技术及在化工过程装备中的应用.doc
- 上海交通大学:《生物工程单元操作原理》课程教学资源_两相流动_流体通过颗粒层的流动_1.pdf
- 上海交通大学:《生物工程单元操作原理》课程教学资源_两相流动_流体通过颗粒层的流动_2.pdf
- 上海交通大学:《生物工程单元操作原理》课程教学资源_两相流动_流体通过颗粒层的流动_3.pdf
- 上海交通大学:《生物工程单元操作原理》课程教学资源_传热过程_传热_1.pdf
- 上海交通大学:《生物工程单元操作原理》课程教学资源_传热过程_传热_2.pdf
- 上海交通大学:《生物工程单元操作原理》课程教学资源_传热过程_传热_3.pdf
- 上海交通大学:《生物工程单元操作原理》课程教学资源_传热过程_传热_4.pdf
- 上海交通大学:《生物工程单元操作原理》课程教学资源_流体流动_流体流动_2.pdf
- 上海交通大学:《生物工程单元操作原理》课程教学资源_流体流动_流体流动_3.pdf
- 上海交通大学:《生物工程单元操作原理》课程教学资源_流体流动_流体流动_4.pdf
- 上海交通大学:《生物工程单元操作原理》课程教学资源_流体流动_流体流动_5.pdf
- 上海交通大学:《生物工程单元操作原理》课程教学资源_流体流动_绪论&流体流动_1.pdf
- 上海交通大学:《生物工程单元操作原理》课程教学资源_流体输送机械_流体机械_1.pdf
- 上海交通大学:《生物工程单元操作原理》课程教学资源_流体输送机械_流体机械_2.pdf
- 上海交通大学:《生物工程单元操作原理》课程教学资源_液体搅拌_液体搅拌.pdf
- 上海交通大学:《生物工程单元操作原理》课程教学资源_气体吸收_Absorption_1.pdf
- 上海交通大学:《生物工程单元操作原理》课程教学资源_气体吸收_Absorption_2.pdf
- 上海交通大学:《生物工程单元操作原理》课程教学资源_气体吸收_Absorption_3.pdf
- 上海交通大学:《生物工程单元操作原理》课程教学资源_气体吸收_Absorption_4.pdf
- 上海交通大学:《生物工程单元操作原理》课程教学资源_气体吸收_Absorption_5.pdf