重庆工商大学:《会计学原理》课程教学资源(PPT课件讲稿)微分方程实验

数学实验 Experiments in Mathematics 微分方程
数学实验 Experiments in Mathematics 微 分 方 程

实验目的 1、学会用 Matlab求简单微分方程的解析解 2、学会用 Matlab求微分方程的数值解. 验内 1、求简单微分方程的解析解 2、求微分方程的数值解 3、数学建模实例 4、实验作业 实验软件 MATLAB
实验目的 实验内容 MATLAB 2、学会用Matlab求微分方程的数值解. 实验软件 1、学会用Matlab求简单微分方程的解析解. 1、求简单微分方程的解析解. 4、实验作业. 2、求微分方程的数值解. 3、 数学建模实例

求微分方程的数值解 (一)常微分方程数值解的定义 (二)建立数值解法的一些途径 (三)用 Matlab软件求常微分方程的数值解 返回
求微分方程的数值解 (一)常微分方程数值解的定义 (二)建立数值解法的一些途径 (三)用Matlab软件求常微分方程的数值解 返 回

数学建模实例 1、目标跟踪问题一:导弹追踪问题 2、目标跟踪问题二:慢跑者与狗 3、地中海鲨鱼问题 返回
1、目标跟踪问题一:导弹追踪问题 2、目标跟踪问题二:慢跑者与狗 3、地中海鲨鱼问题 返 回 数学建模实例

微分方程的解析解 求微分方程(组)的解析解命令: dsolve(方程1,‘方程2,…方程n’,初始条件’,‘自变量’) 记号:在表达微分方程时,用字母D表示求微分,D2、D3等 表示求高阶微分任何D后所跟的字母为因变量,自变量可以指 定或由系统规则选定为确省 例如,微分方程 2 0应表达为:D2y=0 例1求 au 1+u2的通解 解输入命令: dsolve(Du=1+u^2,t) 结果:u=tg(tc) To Matlab(ff1)
微分方程的解析解 求微分方程(组)的解析解命令: dsolve(‘方程1’ , ‘方程2’ ,…‘方程n’ , ‘初始条件’ , ‘自变量’) 记号: 在表达微分方程时,用字母 D 表示求微分,D2、D3 等 表示求高阶微分.任何 D 后所跟的字母为因变量,自变量可以指 定或由系统规则选定为确省. 例如,微分方程 0 2 2 dx d y 应表达为:D2y=0. 例 1 求 2 1 u dt du 的通解. 解 输入命令:dsolve('Du=1+u^2' , 't') 结 果:u = tg(t-c) To Matlab(ff1)

例2求微分方程的特解 +4+29 少y=0 dx x y(0)=0,y(0)=15 解输入命令:y= dsolve(D2y+4*Dy+29*y=0y(0)=0,Dy(0=15;x) To Matlab(ff2) 结果为:y=3esin(5x)
例 2 求微分方程的特解. (0) 0, '(0) 15 4 29 0 2 2 y y y dx dy dx d y 解 输入命令: y=dsolve('D2y+4*Dy+29*y=0' , 'y(0)=0,Dy(0)=15' , 'x') 结 果 为 : y =3e -2xsin(5x) To Matlab(ff2)

例3求微分方程组的通解 dx=2x-3y+32 dy=4x-5y+32 dt dz 4x 4y+2z y 解输入命令: [xy,2]= dsolve(Dx=2*x-3*y+3*z,Dy=4*x-5*y+3*z,Dz=4*x-4*y+2*z,"t); x= simple(x)%将ⅹ化简 y=simple(y) To Matlab(ff3) z=simple(z) 结果为:x=(c1-c2+c3+c2e3t-c3e-3)e2t y=-ce-4+c2e4+c2e3-c3e-3+c1-C2+c3)e2 Z=(-c1e4+c2e4t+c1-C2+c3)e 返回
例 3 求微分方程组的通解. x y z dt dz x y z dt dy x y z dt dx 4 4 2 4 5 3 2 3 3 解 输入命令 : [x,y,z]=dsolve('Dx=2*x-3*y+3*z' , 'Dy=4*x-5*y+3*z' , 'Dz=4*x-4*y+2*z' , 't'); x=simple(x) % 将x化简 y=simple(y) z=simple(z) 结 果 为:x = (c1-c2+c3+c2e -3t-c3e -3t)e 2t y = -c1e -4t+c2e -4t+c2e -3t-c3e -3t+c1-c2+c3)e 2t z = (-c1e -4t+c2e -4t+c1-c2+c3)e 2t To Matlab(ff3) 返 回

微分方程的数值解 (一)常微分方程数值解的定义 在生产和科研中所处理的微分方程往往很复杂且大多 得不出一般解。而在实际上对初值问题,一般是要求得 到解在若干个点上满足规定精确度的近似值,或者得到 个满足精确度要求的便于计算的表达式。 因此,研究常微分方程的数值解法是十分必要的。 对常微分方程:y=xy) 其数值解是指由初始点x。开始 的若干离散的x值处,即对x0<x1<x2<…<xn求出准确值y(x1), (x2)…,y(xn)的相应近似值y12y2…,yn 返回
微分方程的数值解 (一)常微分方程数值解的定义 在生产和科研中所处理的微分方程往往很复杂且大多 得不出一般解。而在实际上对初值问题,一般是要求得 到解在若干个点上满足规定精确度的近似值,或者得到 一个满足精确度要求的便于计算的表达式。 因此,研究常微分方程的数值解法是十分必要的。 的相应近似值 。 的若干离散的 值处,即对 ,求出准确值 对常微分方程: ,其数值解是指由初始点 开始 n n n y x y x y y x x x x x y ( ), , ( ) y , , , y(x ), x y(x ) y' f(x, y) 2 1 2 0 1 2 1 0 0 0 返 回

(二)建立数值解法的一些途径 设x1-x1=h,i=0,1,2,…n-1,可用以下离散化方法求解微分方程: ∫y=f(xy) (X, 1、用差商代替导数 若步长h较小,则有 (x)≈x+h 故有公式: 1=y2+hf(x1,y1) i=0,1,2,…,n-1 y(x0) 此即欧拉法
(二)建立数值解法的一些途径 0 0 i 1 y(x ) y' f(x, y) x , 0,1,2, 1, y 设 xi h i n 可用以下离散化方法求解微分方程: 1、用差商代替导数 若步长h较小,则有 h y x h y x y x ( ) ( ) '( ) 故有公式: i 0,1,2, ,n -1 ( ) ( , ) 0 0 1 y y x y y hf x y i i i i 此即欧拉法

2、使用数值积分 对方程y=f(xy),两边由x到x积分,并利用梯形公式,有: f(,y(1)≈x+1-x 2(x1,y(x)+f(x+1,y(x1) 故有公式:y1=+2U(x2y)+f(x1,月 yo=y(x 实际应用时,与欧拉公式结合使用: yii=y hf(x,yi) y141=y+[f(x,y)+f(x1,y)k=012,… 对于已给的精确度6,当满足4+)-1y出<时,取ym1=y 然后继续下一步y12的计算 此即改进的欧拉法
2、使用数值积分 对方程y’=f(x,y), 两边由xi到xi+1积分,并利用梯形公式,有: [ ( , ( )) ( , ( ))] 2 ( ) ( ) ( , ( )) 1 1 1 1 1 i i i i i i x x i i f x y x f x y x x x y x y x f t y t dt i i 实际应用时,与欧拉公式结合使用: [ ( , ) ( , )] 0,1,2, 2 ( , ) ( ) 1 1 ( 1) 1 (0) 1 f x y f x y k h y y y y hf x y k i i i i i k i i i i i 然后继续下一步 的计算。 对于已给的精确度 ,当满足 时,取 ( ) , y y i 2 1 i 1 1 ( ) 1 ( 1) 1 k i k i k i y y y 此即改进的欧拉法。 故有公式: ( ) [ ( , ) ( , )] 2 0 0 1 1 1 y y x f x y f x y h y y i i i i i i
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 重庆工商大学:《会计学原理》课程教学资源(PPT课件讲稿)第七章 会计账簿.ppt
- 重庆工商大学:《会计学原理》课程教学资源(PPT课件讲稿)实验一 飞机票的预定策略问题.ppt
- 重庆工商大学:《会计学原理》课程教学资源(PPT课件讲稿)数据的统计分析与描述.ppt
- 重庆工商大学:《会计学原理》课程教学资源(PPT课件讲稿)第十章 会计循环与会计核算形式.ppt
- 重庆工商大学:《会计学原理》课程教学资源(PPT课件讲稿)第六章 会计凭证.ppt
- 重庆工商大学:《会计学原理》课程教学资源(PPT课件讲稿)第八章 财产清查.ppt
- 重庆工商大学:《会计学原理》课程教学资源(PPT课件讲稿)第四章 帐户与复式记帐法的应用.ppt
- 重庆工商大学:《会计学原理》课程教学资源(PPT课件讲稿)第三章 复式记账.ppt
- 重庆工商大学:《会计学原理》课程教学资源(PPT课件讲稿)第二章 会计科目和帐户.ppt
- 重庆工商大学:《会计学原理》课程教学资源(PPT课件讲稿)第五章 帐户的分类.ppt
- 重庆工商大学:《会计学原理》课程教学资源(PPT课件讲稿)第一章 总论.ppt
- 清华大学:《金融市场学》课程教学资源(PPT课件讲稿)第十七章 外汇市场工具.ppt
- 清华大学:《金融市场学》课程教学资源(PPT课件讲稿)第十五章 股票指数的编制.ppt
- 清华大学:《金融市场学》课程教学资源(PPT课件讲稿)第十三章 远期利率协议与互换.ppt
- 清华大学:《金融市场学》课程教学资源(PPT课件讲稿)第十三章 互换合约远期.ppt
- 清华大学:《金融市场学》课程教学资源(PPT课件讲稿)第十二章 期权合约.ppt
- 清华大学:《金融市场学》课程教学资源(PPT课件讲稿)第十一章 金融期货.ppt
- 清华大学:《金融市场学》课程教学资源(PPT课件讲稿)第十章 商品期货.ppt
- 清华大学:《金融市场学》课程教学资源(PPT课件讲稿)第九章 短期货币市场工具.ppt
- 清华大学:《金融市场学》课程教学资源(PPT课件讲稿)第七章 股票指数的编制.ppt
- 重庆工商大学:《会计学原理》课程教学资源(PPT课件讲稿)第九章 会计报表.ppt
- 重庆工商大学:《会计学原理》课程教学资源(习题库).doc
- 重庆工商大学:《会计学原理》课程教学资源(教学大纲).doc
- 安徽财经大学:《马克思主义政治经济学原理》资本主义部分.ppt
- 安徽财经大学:《政治经济学》课程PPT教学课件(社会主义部分).ppt
- 安徽财经大学:《政治经济学》课程教学资源_教学大纲(资本主义、社会主义).doc
- 安徽财经大学:《政治经济学》课程教学资源_电子教案.doc
- 安徽财经大学:《政治经济学》课程教学资源_试题库.doc
- 黑龙江农业经济职业学院:《经济法基础》课程教学资源(PPT课件)绪论——经济学的研究对象.ppt
- 黑龙江农业经济职业学院:《经济法基础》课程教学资源(PPT课件)绪论——经济学的研究方法.ppt
- 黑龙江农业经济职业学院:《经济法基础》课程教学资源(PPT课件)第一章 需求函数与需求定理 1.1 需求函数与需求定理(主讲:李国政).ppt
- 黑龙江农业经济职业学院:《经济法基础》课程教学资源(PPT课件)第一章 需求函数与需求定理(2.2)商品需求弹性及应用.ppt
- 黑龙江农业经济职业学院:《经济法基础》课程教学资源(PPT课件)第一章 需求函数与需求定理(1.3)需求收入弹性与需求交叉弹性.ppt
- 黑龙江农业经济职业学院:《经济法基础》课程教学资源(PPT课件)第二章 供给理论及其应用(2.1)供给函数与供给定理.ppt
- 黑龙江农业经济职业学院:《经济法基础》课程教学资源(PPT课件)第二章 供给理论及其应用(2.2)规模报酬与适度经营规模分析.ppt
- 黑龙江农业经济职业学院:《经济法基础》课程教学资源(PPT课件)第二章 供给理论及其应用(2.3)学习效应与范围经济.ppt
- 黑龙江农业经济职业学院:《经济法基础》课程教学资源(PPT课件)第三章(3.1)市场经济的特点与建设措施.ppt
- 黑龙江农业经济职业学院:《经济法基础》课程教学资源(PPT课件)第三章(3.2)均衡价格与供求定理.ppt
- 黑龙江农业经济职业学院:《经济法基础》课程教学资源(PPT课件)第三章(3.3)均衡价格理论的应用.ppt
- 黑龙江农业经济职业学院:《经济法基础》课程教学资源(PPT课件)第四章(4.1)消费欲望与效用.ppt