复旦大学:《投资学讲义》(英文版) Chapter 18 GMM in explicit discount factor models

Chapter 18 GMM in explicit discount factor models Fan longzhen
Chapter 18 GMM in explicit discount factor models Fan Longzhen

Our task How to estimate and test discount factor model Ep, =e(m data,, parameter)x, 1. Bring an asset pricing model to data to estimate free parameters. For example, parameter B, r in m=B(c /c Or the b inm=o'f 2. Evaluate the model, is it a good model or not? Is another model better?
Our task How to estimate and test discount factor model. 1. Bring an asset pricing model to data to estimate free parameters. For example, parameter in • Or the b in 2. Evaluate the model, is it a good model or not? Is another model better? • β,γ γ β − = + ( / ) t 1 t m c c m = b' f ( ( , ) ) t = t+1 t+1 t+1 Ep E m data parameter x

GMM in explicit discount factor model Asset pricing model predicts that E(p)=E[m(data, l,parameters)x,+1 The most natural way to check this prediction is to examine sample average, 1,. e, to calculate ∑na0.m(bamr
GMM in explicit discount factor model • Asset pricing model predicts that • The most natural way to check this prediction is to examine sample average, i,.e., to calculate • and ( ) [ ( , ) ] t = t+1 t+1 E p E m data parameters x ∑= T t t p T 1 1 ∑= + + T t t t m data parameters x T 1 1 1 [ ( , ) ] 1

GMM and asset pricing model Any asset pricing model implies E(p)=E[m, (6) t+1 Equivalently E[p, -m, (6)x 1=0 or E(m. (6)R4 1-1]=0 Where x and p are typically vectors; we typically check whether a model for m can price a number of assets simultaneously So the equation is often called moment conditions Define errors as u, (6)=m,.(6)*+, The sample mean is 8(6)=2u,(b)=ErJu,(L The first stage estimate of b minimizes a quadratic form of the sample mean of the errors b,=arg min6 87(6)Wg(b) For some arbitrary matrix w(often W=l)
GMM and asset pricing model • Any asset pricing model implies • Equivalently or • Where x and p are typically vectors; we typically check whether a model for m can price a number of assets simultaneously. So the equation is often called moment conditions. • Define errors as • The sample mean is • The first stage estimate of b minimizes a quadratic form of the sample mean of the errors, • • For some arbitrary matrix W (often W=I) ( ) [ ( ) ] t = t+1 t+1 E p E m b x E [ pt − mt+1( b ) xt+1] = 0 t t t t u b = m b x − p +1 +1 ( ) ( ) ∑= = = T t T ut b ET ut b T g b 1 ( ) [ ( )] 1 ( ) { } ) ˆ )' ( ˆ argmin ( ˆ b1 ˆ g T b Wg T b b = E [ mt+1( b ) Rt+1 − 1 ] = 0

GMM and asset pricing model continued USing b,, form an estimate s of S=∑Eu(6)x-( Second-stage estimate b2=arg min gr(b)sg,(b) 6 is a consistent, asymptotically normal, and asymptotically efficient estimate of the parameter vector b The variance-covariance matrix of b. is var(b)=-(dsd) · Where ab
GMM and asset pricing model--- continued • Using , form an estimate of • • Second-stage estimate • is a consistent, asymptotically normal, and asymptotically efficient estimate of the parameter vector b. • The variance-covariance matrix of is • • Where 1 ˆ b S ˆ { } ) ˆ ( ˆ )' ˆ argmin ( ˆ 1 b 2 ˆ g T b S g T b b − = ∑ ∞ =−∞ = − j t t j S E[u ( b ) u ( b)'] 2 ˆ b 2 ˆ b 1 1 2 ( ' ) 1 ) ˆ var( − − = d S d T b b g b d T ∂ ∂ = ( )

Test of parameters This variance-covariance matrix can be used to test whether a parameter or a group of parameters is equal to zero. vla var(b) No,)b, [var(b)]b, x(#ofb, Finally, the test of overidentifying restriction is a test of the overall fit of the model TU=I min[gr(b)'58(6)]-x(of moments-#of parameters {b}
Test of parameters • This variance-covariance matrix can be used to test whether a parameter or a group of parameters is equal to zero, via • Finally, the test of overidentifying restriction is a test of the overall fit of the model, ~ ( 0,1) ) ˆ var( ˆ N b b ii i ~ (# ) ˆ ) ] ˆ [var( ˆ 1 2 b j b jj b j χ ofb j − { } [ ( )' ( )] ~ (# # ) 1 2 TJ T min g b S g b of moments of parameters T T b T = − − χ

Interpreting the gMM procedure--pricing errors g(6) =E[m(6), ]-EIP, In the language of expected returns 8,(bS proportional to the difference between actual and predicted returns Jensens alp · Because So we can write E(R )=-coV(m, R /E(m) gb=e(mr ) =e(me(R )-(cov(m, R/E(m) Factual mean return-predicted mean return Rf If we express the model in expected return-beta language E(R2)=a1+B then the GMM object is proportional to the Jensen's alpha measure of mispricing g6=a /R
Interpreting the GMM procedure—pricing errors • In the language of expected returns, is proportional to the difference between actual and predicted returns: Jensen’s alphas. • Because • So we can write • =(actual mean return-predicted mean return)/R f • If we express the model in expected return-beta language then the GMM object is proportional to the Jensen’s alpha measure of mispricing ( ) [ ( ) ] [ ] T T t 1 t 1 T t g b = E m b x − E p + + g (b) T E ( R ) cov( m, R ) / E ( m ) e e = − g ( b ) E (mR ) E ( m)( E ( R ) ( cov( m, R ) / E ( m))) e e e = = − − ( ) αi β i 'λ ei E R = + f g ( b ) = αi / R

Why va(g)=wa(∑un)→n∑Bun)=nS This fact suggests that a good weighting matrix might be inverse of S. Hansen(1982)shows formally that the choice W=S-is statistically optimal weighting matrix, meaning that it produces estimates with lowest asymptotic variance
Why • This fact suggests that a good weighting matrix might be inverse of S. Hansen (1982) shows formally that the choice is statistically optimal weighting matrix, meaning that it produces estimates with lowest asymptotic variance. −1 S ∑ ∑ ∞ =−∞ − = = + → = j t t j T t T t S T E u u T u T g 1 ( ' ) 1 ) 1 var( ) var( 1 1 −1 W = S

Standard errors The formula for the standard error of the estimate va (2)=(dSa) Where it come from?-Delta method Delta method the asymptotic variance of f(x)is f'(x)'var(x) S/T is the variance matrix of the moment 8T Is [Og /ab] Then the delta method gives ab ab gz T ogr agr t
Standard errors • The formula for the standard error of the estimate, • Where it come from? –”Delta method” • Delta method: the asymptotic variance of f(x) is • S/T is the variance matrix of the moment . • is • Then the delta method gives 1 1 2 ( ' ) 1 ) ˆ var( − − = d S d T b '( ) var( ) 2 f x x T g −1 d T T g b g b ∂ ∂ ∂ ∂ = −1 [ / ] 1 1 2 1 var( ) 1 ) ˆ var( − − = ∂ ∂ ∂ ∂ = d Sd g T b g g b T b T T T

test T You have estimated parameters that make a model"fit best". The natural question is how does it fit? It is natural to look at pricing errors and see if they are bi The J asks whether they are big by statistical method. If it is big the model is rejected The test is T=minlE(b)s"gT (6)x(# of moments-#of parameters)
test • You have estimated parameters that make a model “fit best”. The natural question is how does it fit? • It is natural to look at pricing errors and see if they are “big”. • The asks whether they are big by statistical method. If it is big, the model is “rejected”. • The test is T J T J { } [ ( )' ( )] ~ (# # ) 1 2 TJ T min g b S g b of moments of parameters T T b T = − − χ
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 复旦大学:《投资学讲义》(英文版) Chapter 17: Conditioning information.pdf
- 复旦大学:《投资学讲义》(英文版) Chapter 15 the equity market.pdf
- 复旦大学:《投资学讲义》(英文版) Chapter 14 The CAPM ——-Applications and tests.pdf
- 复旦大学:《投资学讲义》(英文版) Chapter 13 Factor pricing model.pdf
- 复旦大学:《投资学讲义》(英文版) Chapter 12.2: General asset pricing model.pdf
- 复旦大学:《投资学讲义》(英文版) Chapter 12.1: Modern Portfolio Theory.pdf
- 复旦大学:《投资学讲义》(英文版) Chapter 11 Performance Evaluation.pdf
- 复旦大学:《投资学讲义》(英文版) Chapter 10 Investment Styles.pdf
- 复旦大学:《投资学讲义》(英文版) Chapter 9 Index and index fund.pdf
- 复旦大学:《投资学讲义》(英文版) Chapter 8 Market Efficiency.pdf
- 复旦大学:《投资学讲义》(英文版) Chepter 7 Arbitrage Pricing Theor.pdf
- 复旦大学:《投资学讲义》(英文版) Chapter 6 Mutiple factor model.pdf
- 复旦大学:《投资学讲义》(英文版) Chepter 5 The Capital A sset Pricing Mode.pdf
- 复旦大学:《投资学讲义》(英文版) Chapter 4 asset diversification.pdf
- 复旦大学:《投资学讲义》(英文版) Cherpter 3 capital allocation.pdf
- 复旦大学:《投资学讲义》(英文版) Chepter 2 Risk and Risk Aversio.pdf
- 复旦大学:《投资学讲义》(英文版) Chapter 1 introduction.pdf
- 复旦大学:《投资学讲义》(英文版) Chapter 16 Market efficiency and active portfolio management.pdf
- 黑龙江农业经济职业学院:《经济法基础》课程教学资源(PPT课件,双语版)第十章 国民收入核算的指标与方法——国民收入核算的基本方法 The Basic Methods of National Income Accounting.ppt
- 黑龙江农业经济职业学院:《经济法基础》课程教学资源(PPT课件,双语版)第十章 国民收入核算的指标与方法——国民收入核算的基本指标 The Basic Indexes of National Income Accounting.ppt
- 复旦大学:《投资学讲义》(英文版) Chapter 19 GMM and regression- based tests of linear factor model.pdf
- 中南民族大学:《微观经济学》课程PPT教学课件(讲稿)第二章 需求和供给曲线以及有关基本概念.ppt
- 中南民族大学:《微观经济学》课程PPT教学课件(讲稿)第五章 成本论.ppt
- 中南民族大学:《微观经济学》课程PPT教学课件(讲稿)第六章 完全竞争市场.ppt
- 中南民族大学:《微观经济学》课程教学资源(参考资料)期中考查试题.doc
- 中南民族大学:《微观经济学》课程PPT教学课件(讲稿)第三章 效用论.ppt
- 中南民族大学:《微观经济学》课程PPT教学课件(讲稿)第七章 不完全竞争的市场.ppt
- 中南民族大学:《微观经济学》课程教学资源(参考资料)武汉市城市用水价格表.doc
- 中南民族大学:《微观经济学》课程教学资源(参考资料)智猪博弈.doc
- 中南民族大学:《微观经济学》课程教学资源(参考资料)田忌赛马.doc
- 中南民族大学:《微观经济学》课程PPT教学课件(讲稿)第四章 生产论.ppt
- 中南民族大学:《微观经济学》课程教学资源(参考资料)囚徒的困境.doc
- 中南民族大学:《微观经济学》课程PPT教学课件(讲稿)第一章 引论(主讲:李明).ppt
- 湖北经济学院:《财政学》课程教学资源(PPT课件)导论.ppt
- 湖北经济学院:《财政学》课程教学资源(PPT课件)第一章 财政的概念与职能.ppt
- 湖北经济学院:《财政学》课程教学资源(PPT课件)第四章 社会消费性支出.ppt
- 湖北经济学院:《财政学》课程教学资源(PPT课件)第五章 财政投资性支出.ppt
- 湖北经济学院:《财政学》课程教学资源(PPT课件)第二章 财政支出的基本理论.ppt
- 湖北经济学院:《财政学》课程教学资源(PPT课件)第三章 财政支出规模与结构分析.ppt
- 湖北经济学院:《财政学》课程教学资源(PPT课件)第九章 税收的经济效应.ppt