复旦大学:《投资学讲义》(英文版) Chapter 19 GMM and regression- based tests of linear factor model

Chapter 19 gmm and regression based tests of linear factor model Fan longzhen
Chapter 19 GMM and regressionbased tests of linear factor model Fan Longzhen

General gmm formula Let y, be an h-vector of variables that are observed at date t, let 0 denote an unknown vector of coefficients, h(e, y,) Be an r-vector real function let 0 denote true value of 8, and suppose this true value is characterized by the property that Eh(eo, 3)=0 A sample of size T is Y=(T,yr-1m,y1) Denote sample average of he,)isg(¥Y)=∑Mn) The gmm estimator 0, is the value of 0 that minimizes the scalar Q(;Yn)=[g(62,Y7)W[8(G,Y) Where W is a sequence of positive definite matrices which may be a function of sample
General GMM formula • Let be an h-vector of variables that are observed at date t, let θ denote an unknown vector of coefficients, • Be an r-vector real function. Let denote true value of θ, and suppose this true value is characterized by the property that • A sample of size T is • Denote sample average of is • The GMM estimator is the value of that minimizes the scalar t y ( , )t h θ y θ 0 { ( , ) } 0 E h θ 0 yt = ( ', ',..., ') 1 1 y y y ΥT = T T − ( , )t h θ y ( ; ) [ ( ; )]' [ ( ; )] T T T T Q θ Υ = g θ Υ W g θ Υ ( , ) 1 ( , ) 1 ∑= Υ = T t T t h y T g θ θ θ T ˆ θ Where is a sequence of positive definite matrices which may be a function of sample WT

example sample y, is from a standard t-distributions withv degrees of freedom, so that its density is f(;)=40、1+(2112 Ifv> 2. its mean is zero. and its variance is 42=E(y2)=v/v-2) For large sample T, the sample moment should be close to the population moment o we have V7 T This is classical moment estimator
example • Sample is from a standard t-distributions with v degrees of freedom, so that its density is • If ,its mean is zero, and its variance is • For large sample T, the sample moment should be close to the population moment • So we have • This is classical moment estimator. t y 2 ( 1)/ 2 1/ 2 [1 ( / )] ( ) ( / 2 ) [( 1 ) / 2] ( ; ) − + + Γ Γ + = v Y t t y v v v v f y v t π v > 2 ( ) /( 2 ) 2 µ2 = E yt = v v − 2 1 2 2, 1 µˆ = ∑ ⎯⎯→ µ = p T t T t y T ˆ 1 2 ˆ ˆ 2, 2, − = T T T v µ µ

Example: Generalized method of moments If v>4, the population fourth moment of the t-distribution is 4=E(y) (y-2)1 If we want to choose v to match both moment, we have following minimization problem where Q(,yrs=gwg } 4T (v-2)v-4) W is 2x2 positive define symmetric matrix reflecting the importance given to matching each of the moments
Example:Generalized Method of Moments • If , the population fourth moment of the t-distribution is • If we want to choose v to match both moment, we have following minimization problem • where • W is positive define symmetric matrix reflecting the importance given to matching each of the moments ν > 4 ( 2)( 4 ) 3 ( ) 2 4 4 − − = = v v v E y µ t { } Q v y T y g Wg v ( , ,..., ) ' min 1 = ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ − − − ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ − − = ( 2)( 4 ) 3 ˆ 2 ˆ 2 4, 2, v v v v v g T T µ µ 2 × 2

Number of parameter and Number of equation If the number of parameter a is the same as the number of the equations r, we simply estimate A by solving g(;2Yr)=0 Usually r>a, so we have to set estimates to minimize the Q,Y)=[g(6;,Yr)Wr[8(6,Yr)
Number of parameter and Number of equation • If the number of parameter a is the same as the number of the equations r, we simply estimate θ by solving • Usually r>a, so we have to set estimates to minimize the ; ) 0 ˆ g (θ T ΥT = ( ; ) [ ( ; )]' [ ( ; )] Q θ ΥT = g θ ΥT WT g θ ΥT

Optimal weighting matrix The optimal weighting matrix is the inverse of asymptotic variance of 8(0,Y It turn out to be S=limTE[(0 Y )1g(00: Y-1 =2I. t→) V=-00 Where r =E[h(o, y)lh(o,y-1) Ifh(0o, y,)Pe were serially uncorrelated, then the matrix S could be consistently estimated by =7∑Q,y)O2
Optimal weighting matrix • The optimal weighting matrix is the inverse of asymptotic variance of • It turn out to be • Where • If were serially uncorrelated, then the matrix S could be consistently estimated by ( , ) g θ 0 ΥT { } ∑ ∞ → ∞ =−∞ = Υ Υ = Γ v T T v t S TE [g ( ; )][ g ( ; )]' lim θ 0 θ 0 Γv = E {[ h (θ 0 , yt)][ h (θ 0 , yt− v )]' } { } ∞ t t=−∞ h ( , y ) θ 0 (){ } 1 / [ ( , )][ ( , )]' 0 0 1 * t t T t T S T ∑ h θ y h θ y = =

Optimal weighting matrix continued New-West (1987)estimate of S could be correlated, the If the vector process h(o, y)- is serially S=+∑/(q+1)kr Where =170mr Why? varu]=q9E(u)+(g-1)E(u1)+E(u1)+.+E(x-1)+E(a11 g∑B(n)
Optimal weighting matrix--- continued • If the vector process is serially correlated, the New-West (1987) estimate of S could be • Where • Why? • { } ∞ t t=−∞ h ( , y ) θ 0 { } ) ˆ ˆ 1 [ /( 1)] ( ˆ ˆ ' , , 1 0, v T v T q v T T S = Γ + ∑ − v q + Γ + Γ = ˆ 1 / {[ ( ˆ, )][ ( ˆ, )]' } 1 , t t v T t v v T T h y h y − = + Γ = ∑ θ θ ( ') var[ ] ( ) ( 1)[ ( ) ( )] ... [ ( ') ( ')] ' 1 ' 1 ' 1 t t k q v q t t t t t t t t q t q t q v v E u u q q v q u qE u u q E u u E u u E u u E u u − = − − − − − = ∑ ∑ − = = + − + + + +

Asymptotic distribution of the gmm estimates Ae the value that minimizes [g(0: Y)'S [8(8; Y)I With S- regarded fixed with respect 0 and S-PS The gmm estimates e is typically a solution to the following system of nonlinear equations ∫eg(G,Y) 6=0 xS7×g(n,Y)=0 In many situations( stationary of y, continuity of h(, and restriction on higher moments )it should be the case 7g(;Y)-→N0.S)
Asymptotic distribution of the GMM estimates • Let be the value that minimizes • With regarded fixed with respect θ and • The GMM estimates is typically a solution to the following system of nonlinear equations : • In many situations( stationary of y, continuity of h(), and restriction on higher moments) it should be the case θ T ˆ [ ( ; )] ˆ [ ( ; )]' 1 T T T g Υ S g Υ − θ θ 1 ˆ − S T S S p ˆ T ⎯⎯→ θ T ˆ [ ; ) ] 0 ˆ ( ˆ ' ' ( ; ) 1 ˆ × × Υ = ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ ∂ ∂ Υ − = T T T T S g g T θ θ θ θ θ ( ; ) ( 0, ) 0 T g N S L θ ΥT ⎯⎯→

proposition With suitable conditions (2)7g{(;Yr)-→N0,S) ()For any sequence (e Pa satisfying 0, 0 · It is case that plim 08(Y, IXO ·Then √7(G1-)-2→N0,) where V=DS
proposition • With suitable conditions • (1) • (2) • (3) For any sequence satisfying • It is case that • Then • where 0 ˆ θ ⎯⎯→θ P T ( ; ) (0, ) 0 T g N S L θ ΥT ⎯⎯→ { }∞=1 *T T θ 0 * θ ⎯⎯→θ P T ' 0 * ' ( ; ) lim ' ( ; ) lim r a T T D g p g p T = = = × ⎭⎬⎫ ⎩⎨⎧ ∂ ∂ Υ = ⎭⎬⎫ ⎩⎨⎧ ∂ ∂ Υ θ θ θ θ θ θ θ θ ) (0, ) ˆ ( T 0 N V L θ T −θ ⎯⎯→ { } 1 1 ' − − V = DS D

Delta method We want to estimate a quantity that is a nonlinear function of sample means b=PE(x,)]=p(u) The estimates is b=E(7∑x The sample variance is var(br)Tl du cov(X x For example, a correlation coefficient can be written as a function of sample means as corr(x, y) E(r,)-Ex, Ey Just take yB2-(Ex)2yE(y2)=(E() u=Ex, Ex, Ey, Ey! Ex, yl
Delta method • We want to estimate a quantity that is a nonlinear function of sample means • The estimates is • The sample variance is • For example, a correlation coefficient can be written as a function of sample means as • Just take = φ[ ( )] = φ( µ) t b E x )] 1 [ ( ˆ 1 ∑= = T t t x T b φ E ' cov( , ') ' 1 ) ˆ var( ∑ ∞ =−∞ − ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ = j T t t j d d x x d d T b µ φ µ φ 2 2 2 2 ( ) ( ) ( ( ) ) ( ) ( , ) t t t t t t t t t t Ex Ex E y E y E x y Ex Ey corr x y − − − = [ ] 2 2 t t t t t t µ = Ex Ex Ey Ey Ex y
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 复旦大学:《投资学讲义》(英文版) Chapter 18 GMM in explicit discount factor models.pdf
- 复旦大学:《投资学讲义》(英文版) Chapter 17: Conditioning information.pdf
- 复旦大学:《投资学讲义》(英文版) Chapter 15 the equity market.pdf
- 复旦大学:《投资学讲义》(英文版) Chapter 14 The CAPM ——-Applications and tests.pdf
- 复旦大学:《投资学讲义》(英文版) Chapter 13 Factor pricing model.pdf
- 复旦大学:《投资学讲义》(英文版) Chapter 12.2: General asset pricing model.pdf
- 复旦大学:《投资学讲义》(英文版) Chapter 12.1: Modern Portfolio Theory.pdf
- 复旦大学:《投资学讲义》(英文版) Chapter 11 Performance Evaluation.pdf
- 复旦大学:《投资学讲义》(英文版) Chapter 10 Investment Styles.pdf
- 复旦大学:《投资学讲义》(英文版) Chapter 9 Index and index fund.pdf
- 复旦大学:《投资学讲义》(英文版) Chapter 8 Market Efficiency.pdf
- 复旦大学:《投资学讲义》(英文版) Chepter 7 Arbitrage Pricing Theor.pdf
- 复旦大学:《投资学讲义》(英文版) Chapter 6 Mutiple factor model.pdf
- 复旦大学:《投资学讲义》(英文版) Chepter 5 The Capital A sset Pricing Mode.pdf
- 复旦大学:《投资学讲义》(英文版) Chapter 4 asset diversification.pdf
- 复旦大学:《投资学讲义》(英文版) Cherpter 3 capital allocation.pdf
- 复旦大学:《投资学讲义》(英文版) Chepter 2 Risk and Risk Aversio.pdf
- 复旦大学:《投资学讲义》(英文版) Chapter 1 introduction.pdf
- 复旦大学:《投资学讲义》(英文版) Chapter 16 Market efficiency and active portfolio management.pdf
- 黑龙江农业经济职业学院:《经济法基础》课程教学资源(PPT课件,双语版)第十章 国民收入核算的指标与方法——国民收入核算的基本方法 The Basic Methods of National Income Accounting.ppt
- 中南民族大学:《微观经济学》课程PPT教学课件(讲稿)第二章 需求和供给曲线以及有关基本概念.ppt
- 中南民族大学:《微观经济学》课程PPT教学课件(讲稿)第五章 成本论.ppt
- 中南民族大学:《微观经济学》课程PPT教学课件(讲稿)第六章 完全竞争市场.ppt
- 中南民族大学:《微观经济学》课程教学资源(参考资料)期中考查试题.doc
- 中南民族大学:《微观经济学》课程PPT教学课件(讲稿)第三章 效用论.ppt
- 中南民族大学:《微观经济学》课程PPT教学课件(讲稿)第七章 不完全竞争的市场.ppt
- 中南民族大学:《微观经济学》课程教学资源(参考资料)武汉市城市用水价格表.doc
- 中南民族大学:《微观经济学》课程教学资源(参考资料)智猪博弈.doc
- 中南民族大学:《微观经济学》课程教学资源(参考资料)田忌赛马.doc
- 中南民族大学:《微观经济学》课程PPT教学课件(讲稿)第四章 生产论.ppt
- 中南民族大学:《微观经济学》课程教学资源(参考资料)囚徒的困境.doc
- 中南民族大学:《微观经济学》课程PPT教学课件(讲稿)第一章 引论(主讲:李明).ppt
- 湖北经济学院:《财政学》课程教学资源(PPT课件)导论.ppt
- 湖北经济学院:《财政学》课程教学资源(PPT课件)第一章 财政的概念与职能.ppt
- 湖北经济学院:《财政学》课程教学资源(PPT课件)第四章 社会消费性支出.ppt
- 湖北经济学院:《财政学》课程教学资源(PPT课件)第五章 财政投资性支出.ppt
- 湖北经济学院:《财政学》课程教学资源(PPT课件)第二章 财政支出的基本理论.ppt
- 湖北经济学院:《财政学》课程教学资源(PPT课件)第三章 财政支出规模与结构分析.ppt
- 湖北经济学院:《财政学》课程教学资源(PPT课件)第九章 税收的经济效应.ppt
- 湖北经济学院:《财政学》课程教学资源(PPT课件)第七章 财政收入规模与结构分析.ppt