麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 7 Iterative Method

Iterative Methods Multigrid Techniques Lecture 7

Background Developed over the last 25 years- Brandt (1973) published first paper with practical results Offers the possibility of solving a problem with work and storage proportional to the number of unknowns Well developed for linear elliptic problems application to other equations is still an active area of research Good Introductory Reference: A Multigrid Tutorial, W.L. Briggs, V.E.Henson, and S F. McCormick, SIAM Monograph, 2000 SMA-HPC⊙2003MT Iterative Methods: Multigrid Techniques 1

Some ideas Basic Principles 1. Multigrid is an iterative method a good initial guess will reduce the number of iterations to solve An Wh= fn by iteration, we could take un w2h, Where Azh W2h= f2h but the number of iterations needed to solve An uh= fn still O(n2) SMA-HPC⊙2003MT Iterative Methods: Multigrid Techniques 2

Some ideas Basic Principles 2. If after a few iterations. the error is smooth we could solve for the error on a coarser mesh, e.g A2h e2h=roh Smooth functions can be represented on coarser grIds, Coarse grid solutions are cheaper SMA-HPC⊙2003MT Iterative Methods: Multigrid Techniques 3

Smoother Basic Principles If the high frequency components of the error decay faster than the low frequency components, we say that the iterative method is a smoother. SMA-HPC⊙2003MT Iterative Methods: Multigrid Techniques 4

Smoother Basic Principles Jacobi ← LOW MODES→}<一 HIGH MODES 000 02 0000 14161820 mode k v(modek-2) n=19 15(mode k=15) Is Jacobi a smoother? →NO SMA-HPC⊙2003MT Iterative Methods: Multigrid Techniques 5

Smoother Basic Principles Under-Relaxed Jacobi 05 1/2 R=R3+(1-)0 ①=23 -5 (UNSTABLE) =1 mode k 入(a)=u(R)+(1-a)=1-c(1-入(E)), 1=1 SMA-HPC⊙2003MT Iterative Methods: Multigrid Techniques 6

Smoother Basic Principles Under-Relaxed Jacob Iterations required to reduce an error mode by a factor of 100 n=19 0=1 500 -0=23 8101214161820 mode k SMA-HPC⊙2003MT Iterative Methods: Multigrid Techniques 7

Smoother Basic Principles Gauss-Seidel Recall -06 mode k =19 Is Gauss-Seidel a good smoother? SMA-HPC⊙2003MT Iterative Methods: Multigrid Techniques 8

Smoother Basic Principles Gauss-Seidel Iterations required to reduce an a error mode by a factor of 100 n=19 gEz 0246810121416182 node k GS is a good smoother SMA-HPC⊙2003MT Iterative Methods: Multigrid Techniques 9
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 6 Solution Methods.pdf
- 麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 7 Iter erative methods.pdf
- 麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 6 Solution methods.pdf
- 麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 5 OUTLINE.pdf
- 麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 5 Finite Differences, Parabolic Problems.pdf
- 麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 4 Finite difference discretization.pdf
- 麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 4 Finite Difference Discretization.pdf
- 麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 2 Finite Difference Discretization.pdf
- 麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 2 Finite difference discretization.pdf
- 麻省理工学院:《偏微分方程式数字方法》(英文版)Numerical Methods for Partial Differential Equations.pdf
- 麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 1 Partial Differential Equations.pdf
- 麻省理工学院:《Satellite Engineering》Lecture 22 reentry.pdf
- 麻省理工学院:《Satellite Engineering》Lecture 23 Spacecraft Thermal Control Systems.pdf
- 麻省理工学院:《Satellite Engineering》Lecture 24 Ground System Design.pdf
- 麻省理工学院:《Satellite Engineering》Lecture 21 Satellite Communication.pdf
- 麻省理工学院:《Satellite Engineering》Lecture 20 Satellite Telemetry, Tracking and Control Subsystems.pdf
- 麻省理工学院:《Satellite Engineering》Lecture 19 Spacecraft Computer Systems.pdf
- 麻省理工学院:《Satellite Engineering》Lecture 18 Spacecraft Autonomy.pdf
- 麻省理工学院:《Satellite Engineering》Lecture 17 Software Engineering for Satellites.pdf
- 麻省理工学院:《Satellite Engineering》Lecture 16 Satellite Systems Software.pdf
- 麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 8 Finite difference discretization.pdf
- 麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 8 Finite Difference Discretization of Hyperbolic Equations.pdf
- 麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 11 notes.pdf
- 麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 11 Hyperbolic Equations Scalar.pdf
- 麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 13 Finite Element Methods for Elliptic Problems.pdf
- 麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 12 Numerical Schemes for Scalar.pdf
- 麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 12 Finite volume discretization.pdf
- 麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 15 Discretization of the poisson.pdf
- 麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 13 Finite element methods.pdf
- 麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 15 Discretization of the Poisson.pdf
- 麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 16 Discret ization of the poisson.pdf
- 麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 18 FEM for the Poisson Problem.pdf
- 麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 16 Discretization of the Poisson Problem in RI: Theory and Implementation.pdf
- 麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 20 Numerical Methods.pdf
- 麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 18 FEM for the poisson problem.pdf
- 麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 20 toupload.pdf
- 麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 21 Notes by Suvranu De and J. White.pdf
- 麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 22 notes.pdf
- 麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 21 notes.pdf
- 麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 22 Integral Equation Methods.pdf